These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 31692762)
1. Mobile-surface bubbles and droplets coalesce faster but bounce stronger. Vakarelski IU; Yang F; Tian YS; Li EQ; Chan DYC; Thoroddsen ST Sci Adv; 2019 Oct; 5(10):eaaw4292. PubMed ID: 31692762 [TBL] [Abstract][Full Text] [Related]
2. Free-Rising Bubbles Bounce More Strongly from Mobile than from Immobile Water-Air Interfaces. Vakarelski IU; Yang F; Thoroddsen ST Langmuir; 2020 Jun; 36(21):5908-5918. PubMed ID: 32380834 [TBL] [Abstract][Full Text] [Related]
3. Why Bubbles Coalesce Faster than Droplets: The Effects of Interface Mobility and Surface Charge. Vakarelski IU; Kamoliddinov F; Thoroddsen ST Langmuir; 2024 May; 40(21):11340-11351. PubMed ID: 38748812 [TBL] [Abstract][Full Text] [Related]
4. Coalescence or Bounce? How Surfactant Adsorption in Milliseconds Affects Bubble Collision. Liu B; Manica R; Liu Q; Klaseboer E; Xu Z J Phys Chem Lett; 2019 Sep; 10(18):5662-5666. PubMed ID: 31368716 [TBL] [Abstract][Full Text] [Related]
5. Coalescence Dynamics of Mobile and Immobile Fluid Interfaces. Vakarelski IU; Manica R; Li EQ; Basheva ES; Chan DYC; Thoroddsen ST Langmuir; 2018 Feb; 34(5):2096-2108. PubMed ID: 29328665 [TBL] [Abstract][Full Text] [Related]
8. Coalescence of Bubbles with Mobile Interfaces in Water. Liu B; Manica R; Liu Q; Klaseboer E; Xu Z; Xie G Phys Rev Lett; 2019 May; 122(19):194501. PubMed ID: 31144923 [TBL] [Abstract][Full Text] [Related]
9. Theory of non-equilibrium force measurements involving deformable drops and bubbles. Chan DY; Klaseboer E; Manica R Adv Colloid Interface Sci; 2011 Jul; 165(2):70-90. PubMed ID: 21257141 [TBL] [Abstract][Full Text] [Related]
10. Numerical analysis of Pickering emulsion stability: insights from ABMD simulations. Sicard F; Striolo A Faraday Discuss; 2016 Oct; 191():287-304. PubMed ID: 27427899 [TBL] [Abstract][Full Text] [Related]
11. Effect of Wettability on the Collision Behavior of Acoustically Excited Droplets. Guo Q; Zhang J; Li D; Yu H Langmuir; 2023 May; 39(21):7408-7417. PubMed ID: 37186956 [TBL] [Abstract][Full Text] [Related]
12. Collisions of Two-Phase Liquid Droplets in a Heated Gas Medium. Tkachenko P; Shlegel N; Strizhak P Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828174 [TBL] [Abstract][Full Text] [Related]
14. Influence of Interfacial Gas Enrichment on Controlled Coalescence of Oil Droplets in Water in Microfluidics. Wang J; Teo AJT; Tan SH; Evans GM; Nguyen NT; Nguyen AV Langmuir; 2019 Mar; 35(10):3615-3623. PubMed ID: 30747538 [TBL] [Abstract][Full Text] [Related]
15. Molecular simulations of droplet coalescence in oil/water/surfactant systems. Rekvig L; Frenkel D J Chem Phys; 2007 Oct; 127(13):134701. PubMed ID: 17919037 [TBL] [Abstract][Full Text] [Related]
16. Multiphase flow in microfluidic systems --control and applications of droplets and interfaces. Shui L; Eijkel JC; van den Berg A Adv Colloid Interface Sci; 2007 May; 133(1):35-49. PubMed ID: 17445759 [TBL] [Abstract][Full Text] [Related]
17. A Numerical Investigation on the Collision Behavior of Polymer Droplets. Qian L; Cong H; Zhu C Polymers (Basel); 2020 Jan; 12(2):. PubMed ID: 31991675 [TBL] [Abstract][Full Text] [Related]
18. Coalescence of charged droplets in outer fluids. Sadeghi HM; Sadri B; Kazemi MA; Jafari M J Colloid Interface Sci; 2018 Dec; 532():363-374. PubMed ID: 30096530 [TBL] [Abstract][Full Text] [Related]
19. Brownian dynamics of emulsion film formation and droplet coalescence. Toro-Mendoza J; Petsev DN Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051404. PubMed ID: 20866227 [TBL] [Abstract][Full Text] [Related]
20. Production of W/O/W (water-in-oil-in-water) multiple emulsions: droplet breakup and release of water. Schuch A; Deiters P; Henne J; Köhler K; Schuchmann HP J Colloid Interface Sci; 2013 Jul; 402():157-64. PubMed ID: 23643254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]