These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 31693036)
1. A thiourea additive-based quadruple cation lead halide perovskite with an ultra-large grain size for efficient perovskite solar cells. Patil JV; Mali SS; Hong CK Nanoscale; 2019 Nov; 11(45):21824-21833. PubMed ID: 31693036 [TBL] [Abstract][Full Text] [Related]
2. Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives. Yu Y; Wang C; Grice CR; Shrestha N; Chen J; Zhao D; Liao W; Cimaroli AJ; Roland PJ; Ellingson RJ; Yan Y ChemSusChem; 2016 Dec; 9(23):3288-3297. PubMed ID: 27783456 [TBL] [Abstract][Full Text] [Related]
3. Controlled Crystal Grain Growth in Mixed Cation-Halide Perovskite by Evaporated Solvent Vapor Recycling Method for High Efficiency Solar Cells. Numata Y; Kogo A; Udagawa Y; Kunugita H; Ema K; Sanehira Y; Miyasaka T ACS Appl Mater Interfaces; 2017 Jun; 9(22):18739-18747. PubMed ID: 28493673 [TBL] [Abstract][Full Text] [Related]
4. Reduced Defects and Enhanced Performance of (FAPbI Quy HV; Truyen DH; Kim S; Bark CW ACS Omega; 2021 Jun; 6(24):16151-16158. PubMed ID: 34179660 [TBL] [Abstract][Full Text] [Related]
5. An efficient solvent additive for the preparation of anion-cation-mixed hybrid and the high performance perovskite solar cells. Yang Y; Wu J; Wu T; Xu Z; Liu X; Guo Q; He X J Colloid Interface Sci; 2018 Dec; 531():602-608. PubMed ID: 30059911 [TBL] [Abstract][Full Text] [Related]
6. Mechanochemical synthesis of pure phase mixed-cation/anion (FAPbI Tang S; Xiao X; Hu J; Gao B; Chen H; Zuo Z; Qi Q; Peng Z; Wen J; Zou D RSC Adv; 2021 Feb; 11(11):5874-5884. PubMed ID: 35423159 [TBL] [Abstract][Full Text] [Related]
7. Universal Surface Passivation of Organic-Inorganic Halide Perovskite Films by Tetraoctylammonium Chloride for High-Performance and Stable Perovskite Solar Cells. Abate SY; Zhang Q; Qi Y; Nash J; Gollinger K; Zhu X; Han F; Pradhan N; Dai Q ACS Appl Mater Interfaces; 2022 Jun; 14(24):28044-28059. PubMed ID: 35679233 [TBL] [Abstract][Full Text] [Related]
8. Reducing Defects of All-Inorganic γ-CsPbI Patil JV; Mali SS; Hong CK ACS Appl Mater Interfaces; 2022 Jun; 14(22):25576-25583. PubMed ID: 35621172 [TBL] [Abstract][Full Text] [Related]
9. Secondary Grain Growth in Organic-Inorganic Perovskite Films with Ethylamine Hydrochloride Additives for Highly Efficient Solar Cells. Ji C; Liang C; Zhang H; Sun M; Song Q; Sun F; Feng X; Liu N; Gong H; Li D; You F; He Z ACS Appl Mater Interfaces; 2020 Apr; 12(17):20026-20034. PubMed ID: 32249563 [TBL] [Abstract][Full Text] [Related]
10. Compositional engineering of perovskite materials for high-performance solar cells. Jeon NJ; Noh JH; Yang WS; Kim YC; Ryu S; Seo J; Seok SI Nature; 2015 Jan; 517(7535):476-80. PubMed ID: 25561177 [TBL] [Abstract][Full Text] [Related]
11. Mixed-Organic-Cation (FA) Chen J; Xu J; Xiao L; Zhang B; Dai S; Yao J ACS Appl Mater Interfaces; 2017 Jan; 9(3):2449-2458. PubMed ID: 28054480 [TBL] [Abstract][Full Text] [Related]
12. Grain engineering by ultrasonic substrate vibration post-treatment of wet perovskite films for annealing-free, high performance, and stable perovskite solar cells. Xiong H; Zabihi F; Wang H; Zhang Q; Eslamian M Nanoscale; 2018 May; 10(18):8526-8535. PubMed ID: 29694485 [TBL] [Abstract][Full Text] [Related]
13. Controllable Two-dimensional Perovskite Crystallization via Water Additive for High-performance Solar Cells. Liu Z; Zheng H; Liu D; Liang Z; Yang W; Chen H; Ji L; Yuan S; Gu Y; Li S Nanoscale Res Lett; 2020 May; 15(1):108. PubMed ID: 32405879 [TBL] [Abstract][Full Text] [Related]
14. Regulated Crystallization of Efficient and Stable Tin-Based Perovskite Solar Cells via a Self-Sealing Polymer. Liu G; Liu C; Lin Z; Yang J; Huang Z; Tan L; Chen Y ACS Appl Mater Interfaces; 2020 Mar; 12(12):14049-14056. PubMed ID: 32129060 [TBL] [Abstract][Full Text] [Related]
15. Stabilization of Highly Efficient and Stable Phase-Pure FAPbI Liu Y; Akin S; Hinderhofer A; Eickemeyer FT; Zhu H; Seo JY; Zhang J; Schreiber F; Zhang H; Zakeeruddin SM; Hagfeldt A; Dar MI; Grätzel M Angew Chem Int Ed Engl; 2020 Sep; 59(36):15688-15694. PubMed ID: 32400061 [TBL] [Abstract][Full Text] [Related]
16. Adjusting the Introduction of Cations for Highly Efficient and Stable Perovskite Solar Cells Based on (FAPbI Liu G; Zheng H; Zhu L; Alsaedi A; Hayat T; Pan X; Mo L; Dai S ChemSusChem; 2018 Jul; 11(14):2436-2443. PubMed ID: 29809319 [TBL] [Abstract][Full Text] [Related]
17. Goethite Quantum Dots as Multifunctional Additives for Highly Efficient and Stable Perovskite Solar Cells. Chen H; Luo Q; Liu T; Ren J; Li S; Tai M; Lin H; He H; Wang J; Wang N Small; 2019 Nov; 15(47):e1904372. PubMed ID: 31609079 [TBL] [Abstract][Full Text] [Related]
18. Unraveling the Impact of Hole Transport Materials on Photostability of Perovskite Films and p-i-n Solar Cells. Boldyreva AG; Zhidkov IS; Tsarev S; Akbulatov AF; Tepliakova MM; Fedotov YS; Bredikhin SI; Postnova EY; Luchkin SY; Kurmaev EZ; Stevenson KJ; Troshin PA ACS Appl Mater Interfaces; 2020 Apr; 12(16):19161-19173. PubMed ID: 32233360 [TBL] [Abstract][Full Text] [Related]
19. Enhanced crystallization of solution-processed perovskite using urea as an additive for large-grain MAPbI Wen X; Cai Q; Shen G; Xu X; Dong P; Du Y; Dong H; Mu C Nanotechnology; 2021 May; 32(30):. PubMed ID: 33831855 [TBL] [Abstract][Full Text] [Related]