These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 31693037)
21. Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries. Shen X; Mu D; Chen S; Wu B; Wu F ACS Appl Mater Interfaces; 2013 Apr; 5(8):3118-25. PubMed ID: 23532681 [TBL] [Abstract][Full Text] [Related]
22. Novel peapod-like Ni₂P nanoparticles with improved electrochemical properties for hydrogen evolution and lithium storage. Bai Y; Zhang H; Li X; Liu L; Xu H; Qiu H; Wang Y Nanoscale; 2015 Jan; 7(4):1446-53. PubMed ID: 25502331 [TBL] [Abstract][Full Text] [Related]
23. Electrochemical Fabrication of Monolithic Electrodes with Core/Shell Sandwiched Transition Metal Oxide/Oxyhydroxide for High-Performance Energy Storage. Chang S; Pu J; Wang J; Du H; Zhou Q; Liu Z; Zhu C; Li J; Zhang H ACS Appl Mater Interfaces; 2016 Oct; 8(39):25888-25895. PubMed ID: 27607557 [TBL] [Abstract][Full Text] [Related]
24. Metal-organic framework-derived hierarchical Co Liu Y; Chi X; Han Q; Du Y; Huang J; Lin X; Liu Y Nanoscale; 2019 Mar; 11(12):5285-5294. PubMed ID: 30843015 [TBL] [Abstract][Full Text] [Related]
25. A morphology, porosity and surface conductive layer optimized MnCo2O4 microsphere for compatible superior Li(+) ion/air rechargeable battery electrode materials. Yun YJ; Kim JK; Ju JY; Unithrattil S; Lee SS; Kang Y; Jung HK; Park JS; Im WB; Choi S Dalton Trans; 2016 Mar; 45(12):5064-70. PubMed ID: 26877264 [TBL] [Abstract][Full Text] [Related]
26. One-Dimensional CoO@C Core–Shell Nanostructures for Improved Lithium Storage Properties. Zhang X; Sun Y; Zhou T; Du J; Wan X; Zhang X; Guo J J Nanosci Nanotechnol; 2017 Jan; 17(1):735-40. PubMed ID: 29633821 [TBL] [Abstract][Full Text] [Related]
27. Hierarchical porous ZnMnO Su X; Huang J; Yan B; Hong Z; Li S; Pang B; Luo Y; Feng L; Zhou M; Xia Y RSC Adv; 2018 Sep; 8(55):31388-31395. PubMed ID: 35548254 [TBL] [Abstract][Full Text] [Related]
28. Heterogeneous Double-Shelled Constructed Fe Zhao R; Shen X; Wu Q; Zhang X; Li W; Gao G; Zhu L; Ni L; Diao G; Chen M ACS Appl Mater Interfaces; 2017 Jul; 9(29):24662-24670. PubMed ID: 28682585 [TBL] [Abstract][Full Text] [Related]
29. Yolk-Shell MnO@ZnMn Zhong M; Yang D; Xie C; Zhang Z; Zhou Z; Bu XH Small; 2016 Oct; 12(40):5564-5571. PubMed ID: 27562457 [TBL] [Abstract][Full Text] [Related]
30. A metal-organic-framework approach to engineer hollow bimetal oxide microspheres towards enhanced electrochemical performances of lithium storage. Sun W; Chen S; Wang Y Dalton Trans; 2019 Feb; 48(6):2019-2027. PubMed ID: 30667432 [TBL] [Abstract][Full Text] [Related]
31. Nitrogen-Doped Porous Carbon Nanosheets from Eco-Friendly Eucalyptus Leaves as High Performance Electrode Materials for Supercapacitors and Lithium Ion Batteries. Mondal AK; Kretschmer K; Zhao Y; Liu H; Wang C; Sun B; Wang G Chemistry; 2017 Mar; 23(15):3683-3690. PubMed ID: 28039908 [TBL] [Abstract][Full Text] [Related]
32. Encapsulating MnSe Nanoparticles Inside 3D Hierarchical Carbon Frameworks with Lithium Storage Boosted by in Situ Electrochemical Phase Transformation. Yang T; Liu J; Zhang M; Yang D; Zheng J; Ju Z; Cheng J; Zhuang J; Liu Y; Zhong J; Liu H; Wang G; Zheng R; Guo Z ACS Appl Mater Interfaces; 2019 Sep; 11(36):33022-33032. PubMed ID: 31424188 [TBL] [Abstract][Full Text] [Related]
33. Porous Core-Shell CuCo Zheng T; Li G; Meng X; Li S; Ren M Chemistry; 2019 Jan; 25(3):885-891. PubMed ID: 30412335 [TBL] [Abstract][Full Text] [Related]
34. Electrochemical Performance and Storage Mechanism of Ag Zhang M; Gao Y; Chen N; Ge X; Chen H; Wei Y; Du F; Chen G; Wang C Chemistry; 2017 Apr; 23(21):5148-5153. PubMed ID: 28244150 [TBL] [Abstract][Full Text] [Related]
35. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. Huang G; Zhang F; Du X; Qin Y; Yin D; Wang L ACS Nano; 2015 Feb; 9(2):1592-9. PubMed ID: 25629650 [TBL] [Abstract][Full Text] [Related]
36. Yolk-Shell Germanium@Polypyrrole Architecture with Precision Expansion Void Control for Lithium Ion Batteries. Mo R; Rooney D; Sun K iScience; 2018 Nov; 9():521-531. PubMed ID: 30476790 [TBL] [Abstract][Full Text] [Related]
37. TiC/NiO Core/Shell Nanoarchitecture with Battery-Capacitive Synchronous Lithium Storage for High-Performance Lithium-Ion Battery. Huang H; Feng T; Gan Y; Fang M; Xia Y; Liang C; Tao X; Zhang W ACS Appl Mater Interfaces; 2015 Jun; 7(22):11842-8. PubMed ID: 25989321 [TBL] [Abstract][Full Text] [Related]
38. Enhanced electrochemical performance of Li-Co-BTC ternary metal-organic frameworks as cathode materials for lithium-ion batteries. Du ZQ; Li YP; Wang XX; Wang J; Zhai QG Dalton Trans; 2019 Feb; 48(6):2013-2018. PubMed ID: 30667015 [TBL] [Abstract][Full Text] [Related]
39. Controllable synthesis of SnO2@C yolk-shell nanospheres as a high-performance anode material for lithium ion batteries. Wang J; Li W; Wang F; Xia Y; Asiri AM; Zhao D Nanoscale; 2014 Mar; 6(6):3217-22. PubMed ID: 24500178 [TBL] [Abstract][Full Text] [Related]
40. Yolk-shell, hollow, and single-crystalline ZnCo(2)O(4) powders: preparation using a simple one-pot process and application in lithium-ion batteries. Choi SH; Kang YC ChemSusChem; 2013 Nov; 6(11):2111-6. PubMed ID: 23908071 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]