These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31693112)

  • 21. Protein contact prediction by integrating joint evolutionary coupling analysis and supervised learning.
    Ma J; Wang S; Wang Z; Xu J
    Bioinformatics; 2015 Nov; 31(21):3506-13. PubMed ID: 26275894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep graph learning of inter-protein contacts.
    Xie Z; Xu J
    Bioinformatics; 2022 Jan; 38(4):947-953. PubMed ID: 34755837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment.
    Fukuda H; Tomii K
    BMC Bioinformatics; 2020 Jan; 21(1):10. PubMed ID: 31918654
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting accurate contacts in thousands of Pfam domain families using PconsC3.
    Michel M; Skwark MJ; Menéndez Hurtado D; Ekeberg M; Elofsson A
    Bioinformatics; 2017 Sep; 33(18):2859-2866. PubMed ID: 28535189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ensembling multiple raw coevolutionary features with deep residual neural networks for contact-map prediction in CASP13.
    Li Y; Zhang C; Bell EW; Yu DJ; Zhang Y
    Proteins; 2019 Dec; 87(12):1082-1091. PubMed ID: 31407406
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins.
    Zhang C; Zheng W; Mortuza SM; Li Y; Zhang Y
    Bioinformatics; 2020 Apr; 36(7):2105-2112. PubMed ID: 31738385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EPSILON-CP: using deep learning to combine information from multiple sources for protein contact prediction.
    Stahl K; Schneider M; Brock O
    BMC Bioinformatics; 2017 Jun; 18(1):303. PubMed ID: 28623886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein Residue Contacts and Prediction Methods.
    Adhikari B; Cheng J
    Methods Mol Biol; 2016; 1415():463-76. PubMed ID: 27115648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of interresidue contacts with DeepMetaPSICOV in CASP13.
    Kandathil SM; Greener JG; Jones DT
    Proteins; 2019 Dec; 87(12):1092-1099. PubMed ID: 31298436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combining co-evolution and secondary structure prediction to improve fragment library generation.
    de Oliveira SHP; Deane CM
    Bioinformatics; 2018 Jul; 34(13):2219-2227. PubMed ID: 29462243
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TCRBuilder: multi-state T-cell receptor structure prediction.
    Wong WK; Marks C; Leem J; Lewis AP; Shi J; Deane CM
    Bioinformatics; 2020 Jun; 36(11):3580-3581. PubMed ID: 32181809
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Web-Based Protocol for Interprotein Contact Prediction by Deep Learning.
    Jing X; Zeng H; Wang S; Xu J
    Methods Mol Biol; 2020; 2074():67-80. PubMed ID: 31583631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FilterDCA: Interpretable supervised contact prediction using inter-domain coevolution.
    Muscat M; Croce G; Sarti E; Weigt M
    PLoS Comput Biol; 2020 Oct; 16(10):e1007621. PubMed ID: 33035205
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlated mutations select misfolded from properly folded proteins.
    Wozniak PP; Vriend G; Kotulska M
    Bioinformatics; 2017 May; 33(10):1497-1504. PubMed ID: 28203707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A large-scale comparative assessment of methods for residue-residue contact prediction.
    Wuyun Q; Zheng W; Peng Z; Yang J
    Brief Bioinform; 2018 Mar; 19(2):219-230. PubMed ID: 27802931
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FALCON@home: a high-throughput protein structure prediction server based on remote homologue recognition.
    Wang C; Zhang H; Zheng WM; Xu D; Zhu J; Wang B; Ning K; Sun S; Li SC; Bu D
    Bioinformatics; 2016 Feb; 32(3):462-4. PubMed ID: 26454278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of residue-residue contact prediction in CASP10.
    Monastyrskyy B; D'Andrea D; Fidelis K; Tramontano A; Kryshtafovych A
    Proteins; 2014 Feb; 82 Suppl 2(0 2):138-53. PubMed ID: 23760879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of residue pairing in interacting β-strands from a predicted residue contact map.
    Mao W; Wang T; Zhang W; Gong H
    BMC Bioinformatics; 2018 Apr; 19(1):146. PubMed ID: 29673311
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ComplexContact: a web server for inter-protein contact prediction using deep learning.
    Zeng H; Wang S; Zhou T; Zhao F; Li X; Wu Q; Xu J
    Nucleic Acids Res; 2018 Jul; 46(W1):W432-W437. PubMed ID: 29790960
    [TBL] [Abstract][Full Text] [Related]  

  • 40. De novo structure prediction of globular proteins aided by sequence variation-derived contacts.
    Kosciolek T; Jones DT
    PLoS One; 2014; 9(3):e92197. PubMed ID: 24637808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.