These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 31693199)

  • 1. High-accuracy protein structures by combining machine-learning with physics-based refinement.
    Heo L; Feig M
    Proteins; 2020 May; 88(5):637-642. PubMed ID: 31693199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective protein model structure refinement by loop modeling and overall relaxation.
    Lee GR; Heo L; Seok C
    Proteins; 2016 Sep; 84 Suppl 1():293-301. PubMed ID: 26172288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein structure refinement via molecular-dynamics simulations: What works and what does not?
    Feig M; Mirjalili V
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):282-92. PubMed ID: 26234208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning in protein structure prediction.
    AlQuraishi M
    Curr Opin Chem Biol; 2021 Dec; 65():1-8. PubMed ID: 34015749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physics-based protein structure refinement in the era of artificial intelligence.
    Heo L; Janson G; Feig M
    Proteins; 2021 Dec; 89(12):1870-1887. PubMed ID: 34156124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applying and improving AlphaFold at CASP14.
    Jumper J; Evans R; Pritzel A; Green T; Figurnov M; Ronneberger O; Tunyasuvunakool K; Bates R; Žídek A; Potapenko A; Bridgland A; Meyer C; Kohl SAA; Ballard AJ; Cowie A; Romera-Paredes B; Nikolov S; Jain R; Adler J; Back T; Petersen S; Reiman D; Clancy E; Zielinski M; Steinegger M; Pacholska M; Berghammer T; Silver D; Vinyals O; Senior AW; Kavukcuoglu K; Kohli P; Hassabis D
    Proteins; 2021 Dec; 89(12):1711-1721. PubMed ID: 34599769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving protein structure prediction with extended sequence similarity searches and deep-learning-based refinement in CASP15.
    Oda T
    Proteins; 2023 Dec; 91(12):1712-1723. PubMed ID: 37485822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refinement of protein structure homology models via long, all-atom molecular dynamics simulations.
    Raval A; Piana S; Eastwood MP; Dror RO; Shaw DE
    Proteins; 2012 Aug; 80(8):2071-9. PubMed ID: 22513870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein structure model refinement in CASP12 using short and long molecular dynamics simulations in implicit solvent.
    Terashi G; Kihara D
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):189-201. PubMed ID: 28833585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein structure modeling and refinement by global optimization in CASP12.
    Hong SH; Joung I; Flores-Canales JC; Manavalan B; Cheng Q; Heo S; Kim JY; Lee SY; Nam M; Joo K; Lee IH; Lee SJ; Lee J
    Proteins; 2018 Mar; 86 Suppl 1():122-135. PubMed ID: 29159837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State-of-the-art web services for de novo protein structure prediction.
    Abriata LA; Dal Peraro M
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of refinement of template-based models in CASP11.
    Modi V; Dunbrack RL
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):260-81. PubMed ID: 27081793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Deep Neural Network ProSPr for Accurate Protein Distance Predictions on CASP14 Targets.
    Stern J; Hedelius B; Fisher O; Billings WM; Della Corte D
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Princeton_TIGRESS 2.0: High refinement consistency and net gains through support vector machines and molecular dynamics in double-blind predictions during the CASP11 experiment.
    Khoury GA; Smadbeck J; Kieslich CA; Koskosidis AJ; Guzman YA; Tamamis P; Floudas CA
    Proteins; 2017 Jun; 85(6):1078-1098. PubMed ID: 28241391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved 3-D Protein Structure Predictions using Deep ResNet Model.
    Geethu S; Vimina ER
    Protein J; 2021 Oct; 40(5):669-681. PubMed ID: 34510309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced Fragment Diversity for Alpha and Alpha-Beta Protein Structure Prediction using Rosetta.
    Abbass J; Nebel JC
    Protein Pept Lett; 2017; 24(3):215-222. PubMed ID: 27993124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Driven to near-experimental accuracy by refinement via molecular dynamics simulations.
    Heo L; Arbour CF; Feig M
    Proteins; 2019 Dec; 87(12):1263-1275. PubMed ID: 31197841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical assessment of methods of protein structure prediction (CASP)-Round XIV.
    Kryshtafovych A; Schwede T; Topf M; Fidelis K; Moult J
    Proteins; 2021 Dec; 89(12):1607-1617. PubMed ID: 34533838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.