BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 31693213)

  • 1. Can Designer Indels Be Tailored by Gene Editing?: Can Indels Be Customized?
    Trimidal SG; Benjamin R; Bae JE; Han MV; Kong E; Singer A; Williams TS; Yang B; Schiller MR
    Bioessays; 2019 Dec; 41(12):e1900126. PubMed ID: 31693213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. INDEL detection, the 'Achilles heel' of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels.
    Bennett EP; Petersen BL; Johansen IE; Niu Y; Yang Z; Chamberlain CA; Met Ö; Wandall HH; Frödin M
    Nucleic Acids Res; 2020 Dec; 48(21):11958-11981. PubMed ID: 33170255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A history of genome editing in mammals.
    Fernández A; Josa S; Montoliu L
    Mamm Genome; 2017 Aug; 28(7-8):237-246. PubMed ID: 28589393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc finger nuclease-mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non-homologous end joining.
    Bonawitz ND; Ainley WM; Itaya A; Chennareddy SR; Cicak T; Effinger K; Jiang K; Mall TK; Marri PR; Samuel JP; Sardesai N; Simpson M; Folkerts O; Sarria R; Webb SR; Gonzalez DO; Simmonds DH; Pareddy DR
    Plant Biotechnol J; 2019 Apr; 17(4):750-761. PubMed ID: 30220095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tools for Efficient Genome Editing; ZFN, TALEN, and CRISPR.
    Shamshirgaran Y; Liu J; Sumer H; Verma PJ; Taheri-Ghahfarokhi A
    Methods Mol Biol; 2022; 2495():29-46. PubMed ID: 35696026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TALEN-Mediated Mutagenesis and Genome Editing.
    Ma AC; Chen Y; Blackburn PR; Ekker SC
    Methods Mol Biol; 2016; 1451():17-30. PubMed ID: 27464798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing.
    Miyaoka Y; Berman JR; Cooper SB; Mayerl SJ; Chan AH; Zhang B; Karlin-Neumann GA; Conklin BR
    Sci Rep; 2016 Mar; 6():23549. PubMed ID: 27030102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.
    Jasin M; Haber JE
    DNA Repair (Amst); 2016 Aug; 44():6-16. PubMed ID: 27261202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing.
    Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY
    Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designed nucleases for targeted genome editing.
    Lee J; Chung JH; Kim HM; Kim DW; Kim H
    Plant Biotechnol J; 2016 Feb; 14(2):448-62. PubMed ID: 26369767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detailed analysis of targeted gene mutations caused by the Platinum-Fungal TALENs in Aspergillus oryzae RIB40 strain and a ligD disruptant.
    Mizutani O; Arazoe T; Toshida K; Hayashi R; Ohsato S; Sakuma T; Yamamoto T; Kuwata S; Yamada O
    J Biosci Bioeng; 2017 Mar; 123(3):287-293. PubMed ID: 27780671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions.
    Lo TW; Pickle CS; Lin S; Ralston EJ; Gurling M; Schartner CM; Bian Q; Doudna JA; Meyer BJ
    Genetics; 2013 Oct; 195(2):331-48. PubMed ID: 23934893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Making ends meet: targeted integration of DNA fragments by genome editing.
    Yamamoto Y; Gerbi SA
    Chromosoma; 2018 Dec; 127(4):405-420. PubMed ID: 30003320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [CRISPR/Cas9 technology in disease research and therapy: a review].
    Shi M; Shen Z; Zhang N; Wang L; Yu C; Yang Z
    Sheng Wu Gong Cheng Xue Bao; 2021 Apr; 37(4):1205-1228. PubMed ID: 33973436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-Homologous End Joining and Homology Directed DNA Repair Frequency of Double-Stranded Breaks Introduced by Genome Editing Reagents.
    Zaboikin M; Zaboikina T; Freter C; Srinivasakumar N
    PLoS One; 2017; 12(1):e0169931. PubMed ID: 28095454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target residence of Cas9-sgRNA influences DNA double-strand break repair pathway choices in CRISPR/Cas9 genome editing.
    Liu SC; Feng YL; Sun XN; Chen RD; Liu Q; Xiao JJ; Zhang JN; Huang ZC; Xiang JF; Chen GQ; Yang Y; Lou C; Li HD; Cai Z; Xu SM; Lin H; Xie AY
    Genome Biol; 2022 Aug; 23(1):165. PubMed ID: 35915475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Off-target effects of engineered nucleases.
    Yee JK
    FEBS J; 2016 Sep; 283(17):3239-48. PubMed ID: 27208701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating DNA Repair Pathways to Improve Precision Genome Engineering.
    Pawelczak KS; Gavande NS; VanderVere-Carozza PS; Turchi JJ
    ACS Chem Biol; 2018 Feb; 13(2):389-396. PubMed ID: 29210569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.