BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 31693306)

  • 1. Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus.
    Ding LN; Li M; Guo XJ; Tang MQ; Cao J; Wang Z; Liu R; Zhu KM; Guo L; Liu SY; Tan XL
    Plant Biotechnol J; 2020 May; 18(5):1255-1270. PubMed ID: 31693306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sclerotinia Stem Rot Resistance in Rapeseed: Recent Progress and Future Prospects.
    Ding LN; Li T; Guo XJ; Li M; Liu XY; Cao J; Tan XL
    J Agric Food Chem; 2021 Mar; 69(10):2965-2978. PubMed ID: 33667087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between Brassica napus polygalacturonase inhibition proteins and Sclerotinia sclerotiorum polygalacturonase: implications for rapeseed resistance to fungal infection.
    Wang Z; Wan L; Zhang X; Xin Q; Song Y; Hong D; Sun Y; Yang G
    Planta; 2021 Jan; 253(2):34. PubMed ID: 33459878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening of microRNAs and target genes involved in Sclerotinia sclerotiorum (Lib.) infection in Brassica napus L.
    Xie L; Jian H; Dai H; Yang Y; Liu Y; Wei L; Tan M; Li J; Liu L
    BMC Plant Biol; 2023 Oct; 23(1):479. PubMed ID: 37807039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Sclerotinia sclerotiorum-inducible promoter pBnGH17D7 in Brassica napus: isolation, characterization, and application in host-induced gene silencing.
    Lin L; Fan J; Li P; Liu D; Ren S; Lin K; Fang Y; Lin C; Wang Y; Wu J
    J Exp Bot; 2022 Nov; 73(19):6663-6677. PubMed ID: 35927220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Inheritance of Sclerotinia Stem Rot Resistance in
    Khan MA; Cowling W; Banga SS; You MP; Tyagi V; Bharti B; Barbetti MJ
    Plant Dis; 2022 Jan; 106(1):127-136. PubMed ID: 34340556
    [No Abstract]   [Full Text] [Related]  

  • 7. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus.
    Ding LN; Guo XJ; Li M; Fu ZL; Yan SZ; Zhu KM; Wang Z; Tan XL
    Plant Cell Rep; 2019 Feb; 38(2):243-253. PubMed ID: 30535511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BnaMPK6 is a determinant of quantitative disease resistance against Sclerotinia sclerotiorum in oilseed rape.
    Wang Z; Zhao FY; Tang MQ; Chen T; Bao LL; Cao J; Li YL; Yang YH; Zhu KM; Liu S; Tan XL
    Plant Sci; 2020 Feb; 291():110362. PubMed ID: 31928657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection.
    Liu F; Li X; Wang M; Wen J; Yi B; Shen J; Ma C; Fu T; Tu J
    Plant Biotechnol J; 2018 Apr; 16(4):911-925. PubMed ID: 28929638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus.
    Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y
    Sci Rep; 2016 Jan; 6():19007. PubMed ID: 26743436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of OsPGIP2 confers Sclerotinia sclerotiorum resistance in Brassica napus through increased activation of defense mechanisms.
    Wang Z; Wan L; Xin Q; Chen Y; Zhang X; Dong F; Hong D; Yang G
    J Exp Bot; 2018 May; 69(12):3141-3155. PubMed ID: 29648614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum.
    Cao JY; Xu YP; Cai XZ
    J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MYB43 in Oilseed Rape (
    Jiang J; Liao X; Jin X; Tan L; Lu Q; Yuan C; Xue Y; Yin N; Lin N; Chai Y
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32455973
    [No Abstract]   [Full Text] [Related]  

  • 14. Genetic mapping and genomic prediction of sclerotinia stem rot resistance to rapeseed/canola (Brassica napus L.) at seedling stage.
    Roy J; Del Río Mendoza LE; Bandillo N; McClean PE; Rahman M
    Theor Appl Genet; 2022 Jun; 135(6):2167-2184. PubMed ID: 35522263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association Mapping Combined with Whole Genome Sequencing Data Reveals Candidate Causal Variants for Sclerotinia Stem Rot Resistance in
    Newman TE; Khentry Y; Leo A; Lindbeck KD; Kamphuis LG; Derbyshire MC
    Phytopathology; 2023 May; 113(5):800-811. PubMed ID: 36880794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide identification of the NPR1-like gene family in Brassica napus and functional characterization of BnaNPR1 in resistance to Sclerotinia sclerotiorum.
    Wang Z; Ma LY; Li X; Zhao FY; Sarwar R; Cao J; Li YL; Ding LN; Zhu KM; Yang YH; Tan XL
    Plant Cell Rep; 2020 Jun; 39(6):709-722. PubMed ID: 32140767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape.
    Wang Z; Mao H; Dong C; Ji R; Cai L; Fu H; Liu S
    Mol Plant Microbe Interact; 2009 Mar; 22(3):235-44. PubMed ID: 19245318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introgression and pyramiding of genetic loci from wild Brassica oleracea into B. napus for improving Sclerotinia resistance of rapeseed.
    Mei J; Shao C; Yang R; Feng Y; Gao Y; Ding Y; Li J; Qian W
    Theor Appl Genet; 2020 Apr; 133(4):1313-1319. PubMed ID: 32008057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer of sclerotinia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step.
    Mei J; Liu Y; Wei D; Wittkop B; Ding Y; Li Q; Li J; Wan H; Li Z; Ge X; Frauen M; Snowdon RJ; Qian W; Friedt W
    Theor Appl Genet; 2015 Apr; 128(4):639-44. PubMed ID: 25628163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LESION MIMIC MUTANT 1 confers basal resistance to Sclerotinia sclerotiorum in rapeseed via a salicylic acid-dependent pathway.
    Yu M; Fan Y; Li X; Chen X; Yu S; Wei S; Li S; Chang W; Qu C; Li J; Lu K
    J Exp Bot; 2023 Sep; 74(18):5620-5634. PubMed ID: 37480841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.