These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 31693306)
1. Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus. Ding LN; Li M; Guo XJ; Tang MQ; Cao J; Wang Z; Liu R; Zhu KM; Guo L; Liu SY; Tan XL Plant Biotechnol J; 2020 May; 18(5):1255-1270. PubMed ID: 31693306 [TBL] [Abstract][Full Text] [Related]
2. A GDSL motif-containing lipase modulates Sclerotinia sclerotiorum resistance in Brassica napus. Ding LN; Hu YH; Li T; Li M; Li YT; Wu YZ; Cao J; Tan XL Plant Physiol; 2024 Sep; ():. PubMed ID: 39321167 [TBL] [Abstract][Full Text] [Related]
3. Sclerotinia Stem Rot Resistance in Rapeseed: Recent Progress and Future Prospects. Ding LN; Li T; Guo XJ; Li M; Liu XY; Cao J; Tan XL J Agric Food Chem; 2021 Mar; 69(10):2965-2978. PubMed ID: 33667087 [TBL] [Abstract][Full Text] [Related]
4. Interaction between Brassica napus polygalacturonase inhibition proteins and Sclerotinia sclerotiorum polygalacturonase: implications for rapeseed resistance to fungal infection. Wang Z; Wan L; Zhang X; Xin Q; Song Y; Hong D; Sun Y; Yang G Planta; 2021 Jan; 253(2):34. PubMed ID: 33459878 [TBL] [Abstract][Full Text] [Related]
5. Screening of microRNAs and target genes involved in Sclerotinia sclerotiorum (Lib.) infection in Brassica napus L. Xie L; Jian H; Dai H; Yang Y; Liu Y; Wei L; Tan M; Li J; Liu L BMC Plant Biol; 2023 Oct; 23(1):479. PubMed ID: 37807039 [TBL] [Abstract][Full Text] [Related]
6. The Sclerotinia sclerotiorum-inducible promoter pBnGH17D7 in Brassica napus: isolation, characterization, and application in host-induced gene silencing. Lin L; Fan J; Li P; Liu D; Ren S; Lin K; Fang Y; Lin C; Wang Y; Wu J J Exp Bot; 2022 Nov; 73(19):6663-6677. PubMed ID: 35927220 [TBL] [Abstract][Full Text] [Related]
8. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus. Ding LN; Guo XJ; Li M; Fu ZL; Yan SZ; Zhu KM; Wang Z; Tan XL Plant Cell Rep; 2019 Feb; 38(2):243-253. PubMed ID: 30535511 [TBL] [Abstract][Full Text] [Related]
9. BnaMPK6 is a determinant of quantitative disease resistance against Sclerotinia sclerotiorum in oilseed rape. Wang Z; Zhao FY; Tang MQ; Chen T; Bao LL; Cao J; Li YL; Yang YH; Zhu KM; Liu S; Tan XL Plant Sci; 2020 Feb; 291():110362. PubMed ID: 31928657 [TBL] [Abstract][Full Text] [Related]
10. Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection. Liu F; Li X; Wang M; Wen J; Yi B; Shen J; Ma C; Fu T; Tu J Plant Biotechnol J; 2018 Apr; 16(4):911-925. PubMed ID: 28929638 [TBL] [Abstract][Full Text] [Related]
11. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y Sci Rep; 2016 Jan; 6():19007. PubMed ID: 26743436 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of OsPGIP2 confers Sclerotinia sclerotiorum resistance in Brassica napus through increased activation of defense mechanisms. Wang Z; Wan L; Xin Q; Chen Y; Zhang X; Dong F; Hong D; Yang G J Exp Bot; 2018 May; 69(12):3141-3155. PubMed ID: 29648614 [TBL] [Abstract][Full Text] [Related]
13. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum. Cao JY; Xu YP; Cai XZ J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552 [TBL] [Abstract][Full Text] [Related]
14. MYB43 in Oilseed Rape ( Jiang J; Liao X; Jin X; Tan L; Lu Q; Yuan C; Xue Y; Yin N; Lin N; Chai Y Genes (Basel); 2020 May; 11(5):. PubMed ID: 32455973 [No Abstract] [Full Text] [Related]
15. Genetic mapping and genomic prediction of sclerotinia stem rot resistance to rapeseed/canola (Brassica napus L.) at seedling stage. Roy J; Del Río Mendoza LE; Bandillo N; McClean PE; Rahman M Theor Appl Genet; 2022 Jun; 135(6):2167-2184. PubMed ID: 35522263 [TBL] [Abstract][Full Text] [Related]
16. Association Mapping Combined with Whole Genome Sequencing Data Reveals Candidate Causal Variants for Sclerotinia Stem Rot Resistance in Newman TE; Khentry Y; Leo A; Lindbeck KD; Kamphuis LG; Derbyshire MC Phytopathology; 2023 May; 113(5):800-811. PubMed ID: 36880794 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide identification of the NPR1-like gene family in Brassica napus and functional characterization of BnaNPR1 in resistance to Sclerotinia sclerotiorum. Wang Z; Ma LY; Li X; Zhao FY; Sarwar R; Cao J; Li YL; Ding LN; Zhu KM; Yang YH; Tan XL Plant Cell Rep; 2020 Jun; 39(6):709-722. PubMed ID: 32140767 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Wang Z; Mao H; Dong C; Ji R; Cai L; Fu H; Liu S Mol Plant Microbe Interact; 2009 Mar; 22(3):235-44. PubMed ID: 19245318 [TBL] [Abstract][Full Text] [Related]
19. Introgression and pyramiding of genetic loci from wild Brassica oleracea into B. napus for improving Sclerotinia resistance of rapeseed. Mei J; Shao C; Yang R; Feng Y; Gao Y; Ding Y; Li J; Qian W Theor Appl Genet; 2020 Apr; 133(4):1313-1319. PubMed ID: 32008057 [TBL] [Abstract][Full Text] [Related]
20. Transfer of sclerotinia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step. Mei J; Liu Y; Wei D; Wittkop B; Ding Y; Li Q; Li J; Wan H; Li Z; Ge X; Frauen M; Snowdon RJ; Qian W; Friedt W Theor Appl Genet; 2015 Apr; 128(4):639-44. PubMed ID: 25628163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]