These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 31693831)

  • 41. Design of a mediated enzymatic fuel cell to generate power from renewable fuel sources.
    Korkut S; Kilic MS
    Environ Technol; 2016; 37(2):163-71. PubMed ID: 26102352
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of a hybrid microbial fuel cell (MFC) and fuel cell (FC) system for improved cathodic efficiency and sustainability: the M2FC reactor.
    Eom H; Chung K; Kim I; Han JI
    Chemosphere; 2011 Oct; 85(4):672-6. PubMed ID: 21752422
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A stackable, two-chambered, paper-based microbial fuel cell.
    Fraiwan A; Choi S
    Biosens Bioelectron; 2016 Sep; 83():27-32. PubMed ID: 27093487
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell.
    Rashid N; Cui YF; Saif Ur Rehman M; Han JI
    Sci Total Environ; 2013 Jul; 456-457():91-4. PubMed ID: 23584037
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hybrid microfluidic fuel cell based on Laccase/C and AuAg/C electrodes.
    López-González B; Dector A; Cuevas-Muñiz FM; Arjona N; Cruz-Madrid C; Arana-Cuenca A; Guerra-Balcázar M; Arriaga LG; Ledesma-García J
    Biosens Bioelectron; 2014 Dec; 62():221-6. PubMed ID: 25016252
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of slow-release carbon sources embedded in polymer for stable and extended power generation in microbial fuel cells.
    Li W; Quan X; Chen L; Zheng Y
    Chemosphere; 2020 Apr; 244():125515. PubMed ID: 32050331
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell.
    Moon H; Chang IS; Kim BH
    Bioresour Technol; 2006 Mar; 97(4):621-7. PubMed ID: 15939588
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of pH on nutrient dynamics and electricity production using microbial fuel cells.
    Puig S; Serra M; Coma M; Cabré M; Balaguer MD; Colprim J
    Bioresour Technol; 2010 Dec; 101(24):9594-9. PubMed ID: 20702091
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of ammonium and nitrate on current generation using dual-cathode microbial fuel cells.
    Jang JK; Choi JE; Ryou YS; Lee SH; Lee EY
    J Microbiol Biotechnol; 2012 Feb; 22(2):270-3. PubMed ID: 22370361
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Litre-scale microbial fuel cells operated in a complete loop.
    Clauwaert P; Mulenga S; Aelterman P; Verstraete W
    Appl Microbiol Biotechnol; 2009 May; 83(2):241-7. PubMed ID: 19183981
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbial fuel cells for energy self-sufficient domestic wastewater treatment-a review and discussion from energetic consideration.
    Lefebvre O; Uzabiaga A; Chang IS; Kim BH; Ng HY
    Appl Microbiol Biotechnol; 2011 Jan; 89(2):259-70. PubMed ID: 20931187
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microbial fuel cell powered by lipid extracted algae: A promising system for algal lipids and power generation.
    Khandelwal A; Vijay A; Dixit A; Chhabra M
    Bioresour Technol; 2018 Jan; 247():520-527. PubMed ID: 28972905
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A hybrid biocathode: surface display of O2-reducing enzymes for microbial fuel cell applications.
    Szczupak A; Kol-Kalman D; Alfonta L
    Chem Commun (Camb); 2012 Jan; 48(1):49-51. PubMed ID: 22075939
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Overcoming bottlenecks of enzymatic biofuel cell cathodes: crude fungal culture supernatant can help to extend lifetime and reduce cost.
    Sané S; Jolivalt C; Mittler G; Nielsen PJ; Rubenwolf S; Zengerle R; Kerzenmacher S
    ChemSusChem; 2013 Jul; 6(7):1209-15. PubMed ID: 23801592
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Occurrence and implications of voltage reversal in stacked microbial fuel cells.
    An J; Lee HS
    ChemSusChem; 2014 Jun; 7(6):1689-95. PubMed ID: 24771553
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Two-stage pretreatment of excess sludge for electricity generation in microbial fuel cell.
    Zhang Y; Zhao YG; Guo L; Gao M
    Environ Technol; 2019 Apr; 40(11):1349-1358. PubMed ID: 29281942
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Conversion of orange peel waste biomass to bioelectricity using a mediator-less microbial fuel cell.
    Miran W; Nawaz M; Jang J; Lee DS
    Sci Total Environ; 2016 Mar; 547():197-205. PubMed ID: 26780146
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bioelectrochemical systems: Sustainable bio-energy powerhouses.
    Gul MM; Ahmad KS
    Biosens Bioelectron; 2019 Oct; 142():111576. PubMed ID: 31412313
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electricity generation from tetrathionate in microbial fuel cells by acidophiles.
    Sulonen ML; Kokko ME; Lakaniemi AM; Puhakka JA
    J Hazard Mater; 2015 Mar; 284():182-9. PubMed ID: 25463232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.