These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 31693928)
41. Enhancement of cortical activation for motor imagery during BCI-FES training Wang Z; Chen L; Yi W; Gu B; Liu S; An X; Xu M; Qi H; He F; Wan B; Ming D Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2527-2530. PubMed ID: 30440922 [TBL] [Abstract][Full Text] [Related]
42. An fNIRS-Based Motor Imagery BCI for ALS: A Subject-Specific Data-Driven Approach. Hosni SM; Borgheai SB; McLinden J; Shahriari Y IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3063-3073. PubMed ID: 33206606 [TBL] [Abstract][Full Text] [Related]
43. Brain activity during observation and motor imagery of different balance tasks: an fMRI study. Taube W; Mouthon M; Leukel C; Hoogewoud HM; Annoni JM; Keller M Cortex; 2015 Mar; 64():102-14. PubMed ID: 25461711 [TBL] [Abstract][Full Text] [Related]
44. Exploring the role of primary and supplementary motor areas in simple motor tasks with fNIRS. Brigadoi S; Cutini S; Scarpa F; Scatturin P; Dell'Acqua R Cogn Process; 2012 Aug; 13 Suppl 1():S97-101. PubMed ID: 22806646 [TBL] [Abstract][Full Text] [Related]
45. Functional near-infrared spectroscopy during motor imagery and motor execution in healthy adults. Zou Y; Li J; Fan Y; Zhang C; Kong Y Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2022 Jul; 47(7):920-927. PubMed ID: 36039589 [TBL] [Abstract][Full Text] [Related]
46. Neural mechanisms of training an auditory event-related potential task in a brain-computer interface context. Halder S; Leinfelder T; Schulz SM; Kübler A Hum Brain Mapp; 2019 Jun; 40(8):2399-2412. PubMed ID: 30693612 [TBL] [Abstract][Full Text] [Related]
47. Effects of neurofeedback on the activities of motor-related areas by using motor execution and imagery. Yang H; Hu Z; Imai F; Yang Y; Ogawa K Neurosci Lett; 2021 Feb; 746():135653. PubMed ID: 33482311 [TBL] [Abstract][Full Text] [Related]
48. Activity in the prefrontal cortex during motor imagery of precision gait: an fNIRS study. Kotegawa K; Yasumura A; Teramoto W Exp Brain Res; 2020 Jan; 238(1):221-228. PubMed ID: 31834451 [TBL] [Abstract][Full Text] [Related]
49. Simultaneous EEG-fNIRS reveals how age and feedback affect motor imagery signatures. Zich C; Debener S; Thoene AK; Chen LC; Kranczioch C Neurobiol Aging; 2017 Jan; 49():183-197. PubMed ID: 27818001 [TBL] [Abstract][Full Text] [Related]
50. BCI Monitor Enhances Electroencephalographic and Cerebral Hemodynamic Activations During Motor Training. Wang Z; Zhou Y; Chen L; Gu B; Yi W; Liu S; Xu M; Qi H; He F; Ming D IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):780-787. PubMed ID: 30843846 [TBL] [Abstract][Full Text] [Related]
51. Trial-to-trial variability differentiates motor imagery during observation between low versus high responders: a functional near-infrared spectroscopy study. Holper L; Kobashi N; Kiper D; Scholkmann F; Wolf M; Eng K Behav Brain Res; 2012 Apr; 229(1):29-40. PubMed ID: 22227507 [TBL] [Abstract][Full Text] [Related]
52. Use of fNIRS to assess resting state functional connectivity. Lu CM; Zhang YJ; Biswal BB; Zang YF; Peng DL; Zhu CZ J Neurosci Methods; 2010 Feb; 186(2):242-9. PubMed ID: 19931310 [TBL] [Abstract][Full Text] [Related]
53. The movement time analyser task investigated with functional near infrared spectroscopy: an ecologic approach for measuring hemodynamic response in the motor system. Vasta R; Cerasa A; Gramigna V; Augimeri A; Olivadese G; Pellegrino G; Martino I; Machado A; Cai Z; Caracciolo M; Grova C; Quattrone A Aging Clin Exp Res; 2017 Apr; 29(2):311-318. PubMed ID: 27055849 [TBL] [Abstract][Full Text] [Related]
54. Towards a BCI for sensorimotor training: initial results from simultaneous fNIRS and biosignal recordings. Zimmermann R; Marchal-Crespo L; Lambercy O; Fluet MC; Riener R; Wolf M; Gassert R Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6339-43. PubMed ID: 22255788 [TBL] [Abstract][Full Text] [Related]
55. Force related hemodynamic responses during execution and imagery of a hand grip task: A functional near infrared spectroscopy study. Wriessnegger SC; Kirchmeyr D; Bauernfeind G; Müller-Putz GR Brain Cogn; 2017 Oct; 117():108-116. PubMed ID: 28673464 [TBL] [Abstract][Full Text] [Related]
56. See, Hear, or Feel - to Speak: A Versatile Multiple-Choice Functional Near-Infrared Spectroscopy-Brain-Computer Interface Feasible With Visual, Auditory, or Tactile Instructions. Nagels-Coune L; Riecke L; Benitez-Andonegui A; Klinkhammer S; Goebel R; De Weerd P; Lührs M; Sorger B Front Hum Neurosci; 2021; 15():784522. PubMed ID: 34899223 [TBL] [Abstract][Full Text] [Related]
57. Comparison of Whole-Head Functional Near-Infrared Spectroscopy With Functional Magnetic Resonance Imaging and Potential Application in Pediatric Neurology. Wagner JC; Zinos A; Chen WL; Conant L; Malloy M; Heffernan J; Quirk B; Sugar J; Prost R; Whelan JB; Beardsley SA; Whelan HT Pediatr Neurol; 2021 Sep; 122():68-75. PubMed ID: 34301451 [TBL] [Abstract][Full Text] [Related]
58. The brain state of motor imagery is reflected in the causal information of functional near-infrared spectroscopy. Du Q; Luo J; Chu C; Wang Y; Cheng Q; Guo S Neuroreport; 2022 Feb; 33(3):137-144. PubMed ID: 35139061 [TBL] [Abstract][Full Text] [Related]
59. Isolating the sources of widespread physiological fluctuations in functional near-infrared spectroscopy signals. Tong Y; Hocke LM; Frederick Bd J Biomed Opt; 2011 Oct; 16(10):106005. PubMed ID: 22029352 [TBL] [Abstract][Full Text] [Related]
60. Pain Induced Changes in Brain Oxyhemoglobin: A Systematic Review and Meta-Analysis of Functional NIRS Studies. Hall M; Kidgell D; Perraton L; Morrissey J; Jaberzadeh S Pain Med; 2021 Jun; 22(6):1399-1410. PubMed ID: 33659994 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]