These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 31694184)
1. Extraction of Cellulose Nanofibers via Eco-friendly Supercritical Carbon Dioxide Treatment Followed by Mild Acid Hydrolysis and the Fabrication of Cellulose Nanopapers. Atiqah MSN; Gopakumar DA; F A T O; Pottathara YB; Rizal S; Aprilia NAS; Hermawan D; Paridah MTT; Thomas S; H P S AK Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31694184 [TBL] [Abstract][Full Text] [Related]
2. Extraction and Isolation of Cellulose Nanofibers from Carpet Wastes Using Supercritical Carbon Dioxide Approach. Nasution H; Yahya EB; Abdul Khalil HPS; Shaah MA; Suriani AB; Mohamed A; Alfatah T; Abdullah CK Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054732 [TBL] [Abstract][Full Text] [Related]
3. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Mtibe A; Linganiso LZ; Mathew AP; Oksman K; John MJ; Anandjiwala RD Carbohydr Polym; 2015 Mar; 118():1-8. PubMed ID: 25542099 [TBL] [Abstract][Full Text] [Related]
4. Study of supercritical carbon dioxide pretreatment processes on green coconut fiber to enhance enzymatic hydrolysis of cellulose. Putrino FM; Tedesco M; Bodini RB; Oliveira AL Bioresour Technol; 2020 Aug; 309():123387. PubMed ID: 32320923 [TBL] [Abstract][Full Text] [Related]
6. Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper. Galland S; Berthold F; Prakobna K; Berglund LA Biomacromolecules; 2015 Aug; 16(8):2427-35. PubMed ID: 26151837 [TBL] [Abstract][Full Text] [Related]
7. Isolation of cellulose nanofibers from rapeseed straw via chlorine-free purification method and its application as reinforcing agent in carboxymethyl cellulose-based films. Mirzaee N; Nikzad M; Battisti R; Araghi A Int J Biol Macromol; 2023 Nov; 251():126405. PubMed ID: 37597636 [TBL] [Abstract][Full Text] [Related]
8. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization. Zhao J; Zhang W; Zhang X; Zhang X; Lu C; Deng Y Carbohydr Polym; 2013 Sep; 97(2):695-702. PubMed ID: 23911503 [TBL] [Abstract][Full Text] [Related]
9. Effect of oxalic acid and sulphuric acid hydrolysis on the preparation and properties of pineapple pomace derived cellulose nanofibers and nanopapers. Neenu KV; Midhun Dominic CD; Begum PMS; Parameswaranpillai J; Kanoth BP; David DA; Sajadi SM; Dhanyasree P; Ajithkumar TG; Badawi M Int J Biol Macromol; 2022 Jun; 209(Pt B):1745-1759. PubMed ID: 35469954 [TBL] [Abstract][Full Text] [Related]
10. Assessment of Bleached and Unbleached Nanofibers from Pistachio Shells for Nanopaper Making. Robles E; Izaguirre N; Martin A; Moschou D; Labidi J Molecules; 2021 Mar; 26(5):. PubMed ID: 33806557 [TBL] [Abstract][Full Text] [Related]
11. Environmentally-Friendly Extraction of Cellulose Nanofibers from Steam-Explosion Pretreated Sugar Beet Pulp. Yang W; Feng Y; He H; Yang Z Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29986494 [TBL] [Abstract][Full Text] [Related]
12. Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites. Saba N; Mohammad F; Pervaiz M; Jawaid M; Alothman OY; Sain M Int J Biol Macromol; 2017 Apr; 97():190-200. PubMed ID: 28082223 [TBL] [Abstract][Full Text] [Related]
13. Thermoplastic starch nanocomposites using cellulose-rich Chrysopogon zizanioides nanofibers. Dominic C D M; Dos Santos Rosa D; Camani PH; Kumar AS; K V N; Begum PMS; Dinakaran D; John E; Baby D; Thomas MM; Joy JM; Parameswaranpillai J; Saeb MR Int J Biol Macromol; 2021 Nov; 191():572-583. PubMed ID: 34582904 [TBL] [Abstract][Full Text] [Related]
14. Structural, Morphological and Thermal Properties of Cellulose Nanofibers from Napier fiber ( Radakisnin R; Abdul Majid MS; Jamir MRM; Jawaid M; Sultan MTH; Mat Tahir MF Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32957438 [TBL] [Abstract][Full Text] [Related]
15. Facile production of cellulose nanofibers from raw elephant grass by an aluminum chloride-enhanced acidic deep eutectic solvent. Yuan JC; Huang R; Jiang LY; Liu GD; Liu PD; Xu WR Int J Biol Macromol; 2023 Aug; 246():125687. PubMed ID: 37406902 [TBL] [Abstract][Full Text] [Related]
16. Structure and thermal properties of cellulose nanofibrils extracted from alkali-ultrasound treated windmill palm fibers. Chen C; Huang D; Yang Q; Wang G; Wang X Int J Biol Macromol; 2023 Dec; 253(Pt 2):126645. PubMed ID: 37659487 [TBL] [Abstract][Full Text] [Related]
17. Scalable Preparation of Cellulose Nanofibers from Office Waste Paper by an Environment-Friendly Method. Huang D; Hong H; Huang W; Zhang H; Hong X Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578020 [TBL] [Abstract][Full Text] [Related]
18. Cellulose long fibers fabricated from cellulose nanofibers and its strong and tough characteristics. Kafy A; Kim HC; Zhai L; Kim JW; Hai LV; Kang TJ; Kim J Sci Rep; 2017 Dec; 7(1):17683. PubMed ID: 29247191 [TBL] [Abstract][Full Text] [Related]
19. Isolation and properties of cellulose nanofibrils from coconut palm petioles by different mechanical process. Xu C; Zhu S; Xing C; Li D; Zhu N; Zhou H PLoS One; 2015; 10(4):e0122123. PubMed ID: 25875280 [TBL] [Abstract][Full Text] [Related]
20. Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Karimi S; Tahir PM; Karimi A; Dufresne A; Abdulkhani A Carbohydr Polym; 2014 Jan; 101():878-85. PubMed ID: 24299851 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]