These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31694241)

  • 1. Author Response to Comment on: Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review.
    Yang G; Park SJ
    Materials (Basel); 2019 Nov; 12(21):. PubMed ID: 31694241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comment on: "Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review".
    Jalouli B; Abbasi A; Musavi Khoei SM
    Materials (Basel); 2019 Nov; 12(21):. PubMed ID: 31694140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review.
    Yang G; Park SJ
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30978917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microscopical and physical characterization of microwave and microwave-hydrothermal synthesis products.
    Zhu XH; Hang QM
    Micron; 2013 Jan; 44():21-44. PubMed ID: 22770618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave effect in the fast synthesis of microporous materials: which stage between nucleation and crystal growth is accelerated by microwave irradiation?
    Jhung SH; Jin T; Hwang YK; Chang JS
    Chemistry; 2007; 13(16):4410-7. PubMed ID: 17407114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid syntheses of a metal-organic framework material Cu3(BTC)2(H2O)3 under microwave: a quantitative analysis of accelerated syntheses.
    Khan NA; Haque E; Jhung SH
    Phys Chem Chem Phys; 2010 Mar; 12(11):2625-31. PubMed ID: 20200739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave synthesis of hybrid inorganic-organic porous materials: phase-selective and rapid crystallization.
    Jhung SH; Lee JH; Forster PM; Férey G; Cheetham AK; Chang JS
    Chemistry; 2006 Oct; 12(30):7899-905. PubMed ID: 16871506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The improved treatment of liquid crystals into non-hazardous molecules using a microwave-assisted hydrothermal method.
    Wang Y; Cao Y; He W; Li G; Zhu H; Huang J
    J Hazard Mater; 2020 Jul; 393():122351. PubMed ID: 32120209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast preparation of LiFePO4 nanoparticles for lithium batteries by microwave-assisted hydrothermal method.
    Yang G; Ji H; Liu H; Huo K; Fu J; Chu PK
    J Nanosci Nanotechnol; 2010 Feb; 10(2):980-6. PubMed ID: 20352745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid microwave-enhanced hydrothermal synthesis and shape evolution of uniform NaGdF4:Yb, Er (Tm/Ho) nanocrystals with upconversion and paramagnetic properties.
    Wang D; Ren L; Zhou X; Wang XZ; Zhou J; Han Y; Kang N
    Nanotechnology; 2012 Jun; 23(22):225705. PubMed ID: 22571924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Reduced Sintering Temperature of Al₂O₃⁻ZrO₂ Nanocomposites Obtained by Microwave Hydrothermal Synthesis.
    Koltsov I; Smalc-Koziorowska J; Prześniak-Welenc M; Małysa M; Kimmel G; McGlynn J; Ganin A; Stelmakh S
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29772834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-Assisted Hydrothermal Synthesis of [Al(OH)(1,4-NDC)] Membranes with Superior Separation Performances.
    Liu Y; Hori A; Kusaka S; Hosono N; Li M; Guo A; Du D; Li Y; Yang W; Ma Y; Matsuda R
    Chem Asian J; 2019 Jun; 14(12):2072-2076. PubMed ID: 31066192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dechlorination of PCBs in the simulative transformer oil by microwave-hydrothermal reaction with zero-valent iron involved.
    Liu X; Zhao W; Sun K; Zhang G; Zhao Y
    Chemosphere; 2011 Jan; 82(5):773-7. PubMed ID: 21074824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave-assisted homogeneous precipitation of hydrotalcites by urea hydrolysis.
    Benito P; Herrero M; Barriga C; Labajos FM; Rives V
    Inorg Chem; 2008 Jun; 47(12):5453-63. PubMed ID: 18494464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures.
    Shi W; Song S; Zhang H
    Chem Soc Rev; 2013 Jul; 42(13):5714-43. PubMed ID: 23563082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swift synthesis of hierarchically ordered mesocellular mesoporous silica by microwave-assisted hydrothermal method.
    Seo YK; Suryanarayana I; Hwang YK; Shin N; Ahn DC; Jun CH; Chang JS
    J Nanosci Nanotechnol; 2008 Aug; 8(8):3995-8. PubMed ID: 19049164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic pretreatment for hydrothermal synthesis of SAPO-34 nanocrystals.
    Askari S; Halladj R
    Ultrason Sonochem; 2012 May; 19(3):554-9. PubMed ID: 22000096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-programmed microwave-assisted synthesis of SBA-15 ordered mesoporous silica.
    Celer EB; Jaroniec M
    J Am Chem Soc; 2006 Nov; 128(44):14408-14. PubMed ID: 17076515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrothermal synthesis of nanostructures.
    Djurisic AB; Xi YY; Hsu YF; Chan WK
    Recent Pat Nanotechnol; 2007; 1(2):121-8. PubMed ID: 19076026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave synthesis of nanoporous materials.
    Tompsett GA; Conner WC; Yngvesson KS
    Chemphyschem; 2006 Feb; 7(2):296-319. PubMed ID: 16463324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.