BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 31694297)

  • 1. 5-(Hydroxyphenyl)-γ-Valerolactone-Sulfate, a Key Microbial Metabolite of Flavan-3-ols, Is Able to Reach the Brain: Evidence from Different in
    Angelino D; Carregosa D; Domenech-Coca C; Savi M; Figueira I; Brindani N; Jang S; Lakshman S; Molokin A; Urban JF; Davis CD; Brito MA; Kim KS; Brighenti F; Curti C; Bladé C; Del Bas JM; Stilli D; Solano-Aguilar GI; Santos CND; Del Rio D; Mena P
    Nutrients; 2019 Nov; 11(11):. PubMed ID: 31694297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, analytical features, and biological relevance of 5-(3',4'-dihydroxyphenyl)-γ-valerolactone, a microbial metabolite derived from the catabolism of dietary flavan-3-ols.
    Sanchez-Patan F; Chioua M; Garrido I; Cueva C; Samadi A; Marco-Contelles J; Moreno-Arribas MV; Bartolome B; Monagas M
    J Agric Food Chem; 2011 Jul; 59(13):7083-91. PubMed ID: 21627328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative biokinetics and metabolism of pure monomeric, dimeric, and polymeric flavan-3-ols: a randomized cross-over study in humans.
    Wiese S; Esatbeyoglu T; Winterhalter P; Kruse HP; Winkler S; Bub A; Kulling SE
    Mol Nutr Food Res; 2015 Apr; 59(4):610-21. PubMed ID: 25546356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity.
    Mena P; Bresciani L; Brindani N; Ludwig IA; Pereira-Caro G; Angelino D; Llorach R; Calani L; Brighenti F; Clifford MN; Gill CIR; Crozier A; Curti C; Del Rio D
    Nat Prod Rep; 2019 May; 36(5):714-752. PubMed ID: 30468210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association of dietary flavan-3-ol intakes with plasma phenyl-γ-valerolactones: analysis from the TUDA cohort of healthy older adults.
    Angelino D; Caffrey A; McNulty H; Gill CI; Mena P; Rosi A; Moore K; Hoey L; Clements M; Laird E; Boyd K; Mullen B; Pucci B; Jarrett H; Cunningham C; Ward M; Strain JJ; McCarroll K; Moore AJ; Molloy AM; Del Rio D
    Am J Clin Nutr; 2023 Aug; 118(2):476-484. PubMed ID: 37307990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of Urinary Phenyl-γ-Valerolactones and Related Valeric Acids in Human Urine on Consumption of Apples.
    Anesi A; Mena P; Bub A; Ulaszewska M; Del Rio D; Kulling SE; Mattivi F
    Metabolites; 2019 Oct; 9(11):. PubMed ID: 31671768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of Urinary Phenyl-γ-Valerolactones as Biomarkers of Dietary Flavan-3-ol Exposure.
    Parmenter BH; Shinde S; Croft K; Murray K; Bondonno CP; Genoni A; Christophersen CT; Bindon K; Kay C; Mena P; Del Rio D; Hodgson JM; Bondonno NP
    J Nutr; 2023 Aug; 153(8):2193-2204. PubMed ID: 37394116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic profile and urinary excretion of phenyl-γ-valerolactones upon consumption of cranberry: a dose-response relationship.
    Favari C; Mena P; Curti C; Istas G; Heiss C; Del Rio D; Rodriguez-Mateos A
    Food Funct; 2020 May; 11(5):3975-3985. PubMed ID: 32396592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flavonoid-Derived Human Phenyl-γ-Valerolactone Metabolites Selectively Detoxify Amyloid-β Oligomers and Prevent Memory Impairment in a Mouse Model of Alzheimer's Disease.
    Ruotolo R; Minato I; La Vitola P; Artioli L; Curti C; Franceschi V; Brindani N; Amidani D; Colombo L; Salmona M; Forloni G; Donofrio G; Balducci C; Del Rio D; Ottonello S
    Mol Nutr Food Res; 2020 Mar; 64(5):e1900890. PubMed ID: 31914208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenyl-γ-valerolactones, flavan-3-ol colonic metabolites, protect brown adipocytes from oxidative stress without affecting their differentiation or function.
    Mele L; Carobbio S; Brindani N; Curti C; Rodriguez-Cuenca S; Bidault G; Mena P; Zanotti I; Vacca M; Vidal-Puig A; Del Rio D
    Mol Nutr Food Res; 2017 Sep; 61(9):. PubMed ID: 28276197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Procyanidin dimers are metabolized by human microbiota with 2-(3,4-dihydroxyphenyl)acetic acid and 5-(3,4-dihydroxyphenyl)-gamma-valerolactone as the major metabolites.
    Appeldoorn MM; Vincken JP; Aura AM; Hollman PC; Gruppen H
    J Agric Food Chem; 2009 Feb; 57(3):1084-92. PubMed ID: 19191673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavan-3-ol Microbial Metabolites Modulate Proteolysis in Neuronal Cells Reducing Amyloid-beta (1-42) Levels.
    Cecarini V; Cuccioloni M; Zheng Y; Bonfili L; Gong C; Angeletti M; Mena P; Del Rio D; Eleuteri AM
    Mol Nutr Food Res; 2021 Sep; 65(18):e2100380. PubMed ID: 34318994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic and analytical strategies for the quantification of phenyl-γ-valerolactone conjugated metabolites in human urine.
    Brindani N; Mena P; Calani L; Benzie I; Choi SW; Brighenti F; Zanardi F; Curti C; Del Rio D
    Mol Nutr Food Res; 2017 Sep; 61(9):. PubMed ID: 28440064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the putative catechin and epicatechin transport across blood-brain barrier.
    Faria A; Pestana D; Teixeira D; Couraud PO; Romero I; Weksler B; de Freitas V; Mateus N; Calhau C
    Food Funct; 2011 Jan; 2(1):39-44. PubMed ID: 21773584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites.
    Monagas M; Urpi-Sarda M; Sánchez-Patán F; Llorach R; Garrido I; Gómez-Cordovés C; Andres-Lacueva C; Bartolomé B
    Food Funct; 2010 Dec; 1(3):233-53. PubMed ID: 21776473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of phase-II metabolites from human serum samples after oral intake of a willow bark extract.
    Untergehrer M; Kiermaier J; Reintjes S; Heilmann J; Jürgenliemk G
    Phytomedicine; 2019 Apr; 57():396-402. PubMed ID: 30849676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structurally related (-)-epicatechin metabolites and gut microbiota derived metabolites exert genomic modifications via VEGF signaling pathways in brain microvascular endothelial cells under lipotoxic conditions: Integrated multi-omic study.
    Corral-Jara KF; Nuthikattu S; Rutledge J; Villablanca A; Fong R; Heiss C; Ottaviani JI; Milenkovic D
    J Proteomics; 2022 Jul; 263():104603. PubMed ID: 35568144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inter-individual variability in the production of flavan-3-ol colonic metabolites: preliminary elucidation of urinary metabotypes.
    Mena P; Ludwig IA; Tomatis VB; Acharjee A; Calani L; Rosi A; Brighenti F; Ray S; Griffin JL; Bluck LJ; Del Rio D
    Eur J Nutr; 2019 Jun; 58(4):1529-1543. PubMed ID: 29616322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted metabolic profiling of phenolics in urine and plasma after regular consumption of cocoa by liquid chromatography-tandem mass spectrometry.
    Urpi-Sarda M; Monagas M; Khan N; Llorach R; Lamuela-Raventós RM; Jáuregui O; Estruch R; Izquierdo-Pulido M; Andrés-Lacueva C
    J Chromatogr A; 2009 Oct; 1216(43):7258-67. PubMed ID: 19671472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5-(3',4'-Dihydroxyphenyl)-γ-Valerolactone Is a Substrate for Human Paraoxonase: A Novel Pathway in Flavan-3-ol Metabolism.
    Momma TY; Kuhnle GGC; Fong RY; Ensunsa JL; Crozier A; Schroeter H; Ottaviani JI
    Mol Nutr Food Res; 2023 Sep; 67(17):e2300281. PubMed ID: 37423968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.