These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
568 related articles for article (PubMed ID: 31694536)
1. Genome survey of resistance gene analogs in sugarcane: genomic features and differential expression of the innate immune system from a smut-resistant genotype. Rody HVS; Bombardelli RGH; Creste S; Camargo LEA; Van Sluys MA; Monteiro-Vitorello CB BMC Genomics; 2019 Nov; 20(1):809. PubMed ID: 31694536 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional analysis identifies major pathways as response components to Sporisorium scitamineum stress in sugarcane. Huang N; Ling H; Su Y; Liu F; Xu L; Su W; Wu Q; Guo J; Gao S; Que Y Gene; 2018 Dec; 678():207-218. PubMed ID: 30099025 [TBL] [Abstract][Full Text] [Related]
3. Characterization and Expression Analysis of Resistance Gene Analogues in Elite Sugarcane Genotypes. Parvaiz A; Mustafa G; Khan MS; Ali MA Protein Pept Lett; 2021; 28(8):929-937. PubMed ID: 33511939 [TBL] [Abstract][Full Text] [Related]
4. RGAugury: a pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. Li P; Quan X; Jia G; Xiao J; Cloutier S; You FM BMC Genomics; 2016 Nov; 17(1):852. PubMed ID: 27806688 [TBL] [Abstract][Full Text] [Related]
5. Small RNA sequencing reveals a role for sugarcane miRNAs and their targets in response to Sporisorium scitamineum infection. Su Y; Zhang Y; Huang N; Liu F; Su W; Xu L; Ahmad W; Wu Q; Guo J; Que Y BMC Genomics; 2017 Apr; 18(1):325. PubMed ID: 28438123 [TBL] [Abstract][Full Text] [Related]
6. A dynamic degradome landscape on miRNAs and their predicted targets in sugarcane caused by Sporisorium scitamineum stress. Su Y; Xiao X; Ling H; Huang N; Liu F; Su W; Zhang Y; Xu L; Muhammad K; Que Y BMC Genomics; 2019 Jan; 20(1):57. PubMed ID: 30658590 [TBL] [Abstract][Full Text] [Related]
7. Genome sequencing of Sporisorium scitamineum provides insights into the pathogenic mechanisms of sugarcane smut. Que Y; Xu L; Wu Q; Liu Y; Ling H; Liu Y; Zhang Y; Guo J; Su Y; Chen J; Wang S; Zhang C BMC Genomics; 2014 Nov; 15(1):996. PubMed ID: 25406499 [TBL] [Abstract][Full Text] [Related]
8. Isolation of nucleotide binding site-leucine rich repeat and kinase resistance gene analogues from sugarcane (Saccharum spp.). Glynn NC; Comstock JC; Sood SG; Dang PM; Chaparro JX Pest Manag Sci; 2008 Jan; 64(1):48-56. PubMed ID: 17935262 [TBL] [Abstract][Full Text] [Related]
9. Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Rossi M; Araujo PG; Paulet F; Garsmeur O; Dias VM; Chen H; Van Sluys MA; D'Hont A Mol Genet Genomics; 2003 Jun; 269(3):406-19. PubMed ID: 12733061 [TBL] [Abstract][Full Text] [Related]
10. Molecular insights into OPR gene family in Saccharum identified a ScOPR2 gene could enhance plant disease resistance. Sun T; Wu Q; Zang S; Zou W; Wang D; Wang W; Shen L; Zhang S; Su Y; Que Y Plant J; 2024 Oct; 120(1):335-353. PubMed ID: 39167539 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the resistance mechanisms in sugarcane during Sporisorium scitamineum infection using RNA-seq and microscopy. McNeil MD; Bhuiyan SA; Berkman PJ; Croft BJ; Aitken KS PLoS One; 2018; 13(5):e0197840. PubMed ID: 29795614 [TBL] [Abstract][Full Text] [Related]
12. Differential expression of SofDIR16 and SofCAD genes in smut resistant and susceptible sugarcane cultivars in response to Sporisorium scitamineum. Sánchez-Elordi E; Contreras R; de Armas R; Benito MC; Alarcón B; de Oliveira E; Del Mazo C; Díaz-Peña EM; Santiago R; Vicente C; Legaz ME J Plant Physiol; 2018 Jul; 226():103-113. PubMed ID: 29753910 [TBL] [Abstract][Full Text] [Related]
13. Screening of sugarcane germplasm against Sporisorium scitamineum and its effects on setts germination and tillering. Rajput MA; Iqbal O; Syed RN; Elsalahy HH; Rajput NA; Ahmad S; Khan R; Khanzada MA; Younas MU; Qasim M; Rizwana H; Almaary KS; Iqbal R; Lodhi AM Sci Rep; 2024 Jun; 14(1):14653. PubMed ID: 38918529 [TBL] [Abstract][Full Text] [Related]
14. Comparative proteomics reveals that central metabolism changes are associated with resistance against Sporisorium scitamineum in sugarcane. Su Y; Xu L; Wang Z; Peng Q; Yang Y; Chen Y; Que Y BMC Genomics; 2016 Oct; 17(1):800. PubMed ID: 27733120 [TBL] [Abstract][Full Text] [Related]
15. Exploring Potential Surrogate Systems for Studying the Early Steps of the Marrafon-Silva M; Maia T; Calderan-Rodrigues MJ; Strabello M; Oliveira L; Creste S; Melotto M; Monteiro-Vitorello CB Phytopathology; 2024 Jun; 114(6):1295-1304. PubMed ID: 38148162 [TBL] [Abstract][Full Text] [Related]
16. Comparative structural analysis of Bru1 region homeologs in Saccharum spontaneum and S. officinarum. Zhang J; Sharma A; Yu Q; Wang J; Li L; Zhu L; Zhang X; Chen Y; Ming R BMC Genomics; 2016 Jun; 17():446. PubMed ID: 27287040 [TBL] [Abstract][Full Text] [Related]
17. Molecular insights into the origin of the brown rust resistance gene Bru1 among Saccharum species. Wang HB; Chen PH; Yang YQ; D'Hont A; Lu YH Theor Appl Genet; 2017 Nov; 130(11):2431-2443. PubMed ID: 28821913 [TBL] [Abstract][Full Text] [Related]
18. Nucleotide binding site/leucine-rich repeats, Pto-like and receptor-like kinases related to disease resistance in grapevine. Di Gaspero G; Cipriani G Mol Genet Genomics; 2003 Aug; 269(5):612-23. PubMed ID: 12884009 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide analysis of NBS-LRR genes revealed contribution of disease resistance from Jiang Z; Zhao M; Qin H; Li S; Yang X Front Plant Sci; 2023; 14():1091567. PubMed ID: 36890898 [TBL] [Abstract][Full Text] [Related]
20. Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance. McIntyre CL; Casu RE; Drenth J; Knight D; Whan VA; Croft BJ; Jordan DR; Manners JM Genome; 2005 Jun; 48(3):391-400. PubMed ID: 16121236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]