These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31694932)

  • 1. A mobility-based classification of closed kinematic chains in biomechanics and implications for motor control.
    Olsen AM
    J Exp Biol; 2019 Nov; 222(Pt 21):. PubMed ID: 31694932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear dynamical model and response of avian cranial kinesis.
    Meekangvan P; A Barhorst A; Burton TD; Chatterjee S; Schovanec L
    J Theor Biol; 2006 May; 240(1):32-47. PubMed ID: 16242730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The significance of closed kinematic chains to biological movement and dynamic stability.
    Levin S; de Solórzano SL; Scarr G
    J Bodyw Mov Ther; 2017 Jul; 21(3):664-672. PubMed ID: 28750982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using linkage models to explore skull kinematic diversity and functional convergence in arthrodire placoderms.
    Anderson PS
    J Morphol; 2010 Aug; 271(8):990-1005. PubMed ID: 20623651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A geometric model of the human ankle joint.
    Leardini A; O'Connor JJ; Catani F; Giannini S
    J Biomech; 1999 Jun; 32(6):585-91. PubMed ID: 10332622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Type synthesis and preliminary design of devices supporting lower limb's rehabilitation.
    Olinski M; Lewandowski B; Gronowicz A
    Acta Bioeng Biomech; 2015; 17(1):117-27. PubMed ID: 25951895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linkage mechanisms in the vertebrate skull: Structure and function of three-dimensional, parallel transmission systems.
    Olsen AM; Westneat MW
    J Morphol; 2016 Dec; 277(12):1570-1583. PubMed ID: 27577864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The opercular mouth-opening mechanism of largemouth bass functions as a 3D four-bar linkage with three degrees of freedom.
    Olsen AM; Camp AL; Brainerd EL
    J Exp Biol; 2017 Dec; 220(Pt 24):4612-4623. PubMed ID: 29237766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concurrent validity of lower extremity kinematics and jump characteristics captured in pre-school children by a markerless 3D motion capture system.
    Harsted S; Holsgaard-Larsen A; Hestbæk L; Boyle E; Lauridsen HH
    Chiropr Man Therap; 2019; 27():39. PubMed ID: 31417672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical models of passive motion at the human ankle joint by equivalent spatial parallel mechanisms.
    Di Gregorio R; Parenti-Castelli V; O'Connor JJ; Leardini A
    Med Biol Eng Comput; 2007 Mar; 45(3):305-13. PubMed ID: 17295023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of cranial kinesis in birds.
    Bout RG; Zweers GA
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Dec; 131(1):197-205. PubMed ID: 11733177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictions of co-contraction depend critically on degrees-of-freedom in the musculoskeletal model.
    Jinha A; Ait-Haddou R; Herzog W
    J Biomech; 2006; 39(6):1145-52. PubMed ID: 16549102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-based approach for human kinematics reconstruction from markerless and marker-based motion analysis systems.
    Sholukha V; Bonnechere B; Salvia P; Moiseev F; Rooze M; Van Sint Jan S
    J Biomech; 2013 Sep; 46(14):2363-71. PubMed ID: 23972432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model.
    El Habachi A; Moissenet F; Duprey S; Cheze L; Dumas R
    Med Biol Eng Comput; 2015 Jul; 53(7):655-67. PubMed ID: 25783762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower limb muscle co-contraction and joint loading of flip-flops walking in male wearers.
    Chen TL; Wong DW; Xu Z; Tan Q; Wang Y; Luximon A; Zhang M
    PLoS One; 2018; 13(3):e0193653. PubMed ID: 29561862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Number of Segments Within Musculoskeletal Foot Models Influences Ankle Kinematics and Strains of Ligaments and Muscles.
    Kim H; Kipp K
    J Orthop Res; 2019 Oct; 37(10):2231-2240. PubMed ID: 31206865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of medially wedged insoles on the biomechanics of the lower limbs of runners with excessive foot pronation and foot varus alignment.
    Braga UM; Mendonça LD; Mascarenhas RO; Alves COA; Filho RGT; Resende RA
    Gait Posture; 2019 Oct; 74():242-249. PubMed ID: 31574408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Evolutionary Dynamics of Mechanically Complex Systems.
    Muñoz MM
    Integr Comp Biol; 2019 Sep; 59(3):705-715. PubMed ID: 31134268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An image-based kinematic model of the tibiotalar and subtalar joints and its application to gait analysis in children with Juvenile Idiopathic Arthritis.
    Montefiori E; Modenese L; Di Marco R; Magni-Manzoni S; Malattia C; Petrarca M; Ronchetti A; de Horatio LT; van Dijkhuizen P; Wang A; Wesarg S; Viceconti M; Mazzà C;
    J Biomech; 2019 Mar; 85():27-36. PubMed ID: 30704761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-plane, multi-joint lower extremity support moments during a rapid deceleration task: Implications for knee loading.
    Podraza JT; White SC; Ramsey DK
    Hum Mov Sci; 2018 Apr; 58():155-164. PubMed ID: 29448160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.