BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

846 related articles for article (PubMed ID: 31695033)

  • 21. Instruction of microbiome taxonomic profiling based on 16S rRNA sequencing.
    Kim H; Kim S; Jung S
    J Microbiol; 2020 Mar; 58(3):193-205. PubMed ID: 32108315
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comprehensive evaluation of the sl1p pipeline for 16S rRNA gene sequencing analysis.
    Whelan FJ; Surette MG
    Microbiome; 2017 Aug; 5(1):100. PubMed ID: 28807046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimizing 16S rRNA gene profile analysis from low biomass nasopharyngeal and induced sputum specimens.
    Claassen-Weitz S; Gardner-Lubbe S; Mwaikono KS; du Toit E; Zar HJ; Nicol MP
    BMC Microbiol; 2020 May; 20(1):113. PubMed ID: 32397992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Establishment and assessment of an amplicon sequencing method targeting the 16S-ITS-23S rRNA operon for analysis of the equine gut microbiome.
    Kinoshita Y; Niwa H; Uchida-Fujii E; Nukada T
    Sci Rep; 2021 Jun; 11(1):11884. PubMed ID: 34088956
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Full-length 16S rRNA gene sequencing by PacBio improves taxonomic resolution in human microbiome samples.
    Buetas E; Jordán-López M; López-Roldán A; D'Auria G; Martínez-Priego L; De Marco G; Carda-Diéguez M; Mira A
    BMC Genomics; 2024 Mar; 25(1):310. PubMed ID: 38528457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the Rat Gut Microbiota via 16S rRNA Amplicon Library Sequencing.
    Ericsson AC; Busi SB; Amos-Landgraf JM
    Methods Mol Biol; 2019; 2018():195-212. PubMed ID: 31228158
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strain-Level Profiling of Oral Microbiota with Targeted Sequencing.
    Mukherjee C; Leys EJ
    Methods Mol Biol; 2021; 2327():239-252. PubMed ID: 34410649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Information about variations in multiple copies of bacterial 16S rRNA genes may aid in species identification.
    Ibal JC; Pham HQ; Park CE; Shin JH
    PLoS One; 2019; 14(2):e0212090. PubMed ID: 30768621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Resolution Differentiation of Enteric Bacteria in Premature Infant Fecal Microbiomes Using a Novel rRNA Amplicon.
    Graf J; Ledala N; Caimano MJ; Jackson E; Gratalo D; Fasulo D; Driscoll MD; Coleman S; Matson AP
    mBio; 2021 Feb; 12(1):. PubMed ID: 33593974
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies.
    Case RJ; Boucher Y; Dahllöf I; Holmström C; Doolittle WF; Kjelleberg S
    Appl Environ Microbiol; 2007 Jan; 73(1):278-88. PubMed ID: 17071787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-throughput qPCR and 16S rRNA gene amplicon sequencing as complementary methods for the investigation of the cheese microbiota.
    Dreier M; Meola M; Berthoud H; Shani N; Wechsler D; Junier P
    BMC Microbiol; 2022 Feb; 22(1):48. PubMed ID: 35130830
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of Illumina versus Nanopore 16S rRNA Gene Sequencing of the Human Nasal Microbiota.
    Heikema AP; Horst-Kreft D; Boers SA; Jansen R; Hiltemann SD; de Koning W; Kraaij R; de Ridder MAJ; van Houten CB; Bont LJ; Stubbs AP; Hays JP
    Genes (Basel); 2020 Sep; 11(9):. PubMed ID: 32967250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Primer Design for an Accurate View of Picocyanobacterial Community Structure by Using High-Throughput Sequencing.
    Huber P; Cornejo-Castillo FM; Ferrera I; Sánchez P; Logares R; Metz S; Balagué V; Acinas SG; Gasol JM; Unrein F
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30709827
    [TBL] [Abstract][Full Text] [Related]  

  • 34. rpoB, a promising marker for analyzing the diversity of bacterial communities by amplicon sequencing.
    Ogier JC; Pagès S; Galan M; Barret M; Gaudriault S
    BMC Microbiol; 2019 Jul; 19(1):171. PubMed ID: 31357928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome.
    Allali I; Arnold JW; Roach J; Cadenas MB; Butz N; Hassan HM; Koci M; Ballou A; Mendoza M; Ali R; Azcarate-Peril MA
    BMC Microbiol; 2017 Sep; 17(1):194. PubMed ID: 28903732
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of Comprehensive Ecosystem-Specific Reference Databases with Species-Level Resolution by High-Throughput Full-Length 16S rRNA Gene Sequencing and Automated Taxonomy Assignment (AutoTax).
    Dueholm MS; Andersen KS; McIlroy SJ; Kristensen JM; Yashiro E; Karst SM; Albertsen M; Nielsen PH
    mBio; 2020 Sep; 11(5):. PubMed ID: 32963001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Species classifier choice is a key consideration when analysing low-complexity food microbiome data.
    Walsh AM; Crispie F; O'Sullivan O; Finnegan L; Claesson MJ; Cotter PD
    Microbiome; 2018 Mar; 6(1):50. PubMed ID: 29554948
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Processing a 16S rRNA Sequencing Dataset with the Microbiome Helper Workflow.
    Douglas GM; Comeau AM; Langille MGI
    Methods Mol Biol; 2018; 1849():131-141. PubMed ID: 30298252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial Diversity Biased Estimation Caused by Intragenomic Heterogeneity and Interspecific Conservation of 16S rRNA Genes.
    Pan P; Gu Y; Sun DL; Wu QL; Zhou NY
    Appl Environ Microbiol; 2023 May; 89(5):e0210822. PubMed ID: 37129483
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved OTU-picking using long-read 16S rRNA gene amplicon sequencing and generic hierarchical clustering.
    Franzén O; Hu J; Bao X; Itzkowitz SH; Peter I; Bashir A
    Microbiome; 2015 Oct; 3():43. PubMed ID: 26434730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.