These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31695042)

  • 1. Genomic data integration by WON-PARAFAC identifies interpretable factors for predicting drug-sensitivity in vivo.
    Kim Y; Bismeijer T; Zwart W; Wessels LFA; Vis DJ
    Nat Commun; 2019 Nov; 10(1):5034. PubMed ID: 31695042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of genomics, high throughput drug screening, and personalized xenograft models as a novel precision medicine paradigm for high risk pediatric cancer.
    Tsoli M; Wadham C; Pinese M; Failes T; Joshi S; Mould E; Yin JX; Gayevskiy V; Kumar A; Kaplan W; Ekert PG; Saletta F; Franshaw L; Liu J; Gifford A; Weber MA; Rodriguez M; Cohn RJ; Arndt G; Tyrrell V; Haber M; Trahair T; Marshall GM; McDonald K; Cowley MJ; Ziegler DS
    Cancer Biol Ther; 2018; 19(12):1078-1087. PubMed ID: 30299205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probabilistic modeling of personalized drug combinations from integrated chemical screen and molecular data in sarcoma.
    Berlow NE; Rikhi R; Geltzeiler M; Abraham J; Svalina MN; Davis LE; Wise E; Mancini M; Noujaim J; Mansoor A; Quist MJ; Matlock KL; Goros MW; Hernandez BS; Doung YC; Thway K; Tsukahara T; Nishio J; Huang ET; Airhart S; Bult CJ; Gandour-Edwards R; Maki RG; Jones RL; Michalek JE; Milovancev M; Ghosh S; Pal R; Keller C
    BMC Cancer; 2019 Jun; 19(1):593. PubMed ID: 31208434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precision Oncology beyond Targeted Therapy: Combining Omics Data with Machine Learning Matches the Majority of Cancer Cells to Effective Therapeutics.
    Ding MQ; Chen L; Cooper GF; Young JD; Lu X
    Mol Cancer Res; 2018 Feb; 16(2):269-278. PubMed ID: 29133589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishment of a platform of non-small-cell lung cancer patient-derived xenografts with clinical and genomic annotation.
    Kang HN; Choi JW; Shim HS; Kim J; Kim DJ; Lee CY; Hong MH; Park SY; Park AY; Shin EJ; Lee SY; Pyo KH; Yun MR; Choi HM; Lee SS; Kim SY; Lee H; Paik S; Cho BC; Lee JG; Kim HR
    Lung Cancer; 2018 Oct; 124():168-178. PubMed ID: 30268457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precision medicine approaches to lung adenocarcinoma with concomitant MET and HER2 amplification.
    Oh DY; Jung K; Song JY; Kim S; Shin S; Kwon YJ; Oh E; Park WY; Song SY; Choi YL
    BMC Cancer; 2017 Aug; 17(1):535. PubMed ID: 28806950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. kESVR: An Ensemble Model for Drug Response Prediction in Precision Medicine Using Cancer Cell Lines Gene Expression.
    Majumdar A; Liu Y; Lu Y; Wu S; Cheng L
    Genes (Basel); 2021 May; 12(6):. PubMed ID: 34070793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patient-derived xenografts as in vivo models for research in urological malignancies.
    Inoue T; Terada N; Kobayashi T; Ogawa O
    Nat Rev Urol; 2017 May; 14(5):267-283. PubMed ID: 28248952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DROEG: a method for cancer drug response prediction based on omics and essential genes integration.
    Wu P; Sun R; Fahira A; Chen Y; Jiangzhou H; Wang K; Yang Q; Dai Y; Pan D; Shi Y; Wang Z
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pancreas Cancer Precision Treatment Using Avatar Mice from a Bioinformatics Perspective.
    Perales-Patón J; Piñeiro-Yañez E; Tejero H; López-Casas PP; Hidalgo M; Gómez-López G; Al-Shahrour F
    Public Health Genomics; 2017; 20(2):81-91. PubMed ID: 28858862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance.
    Choi J; Park S; Ahn J
    Sci Rep; 2020 Feb; 10(1):1861. PubMed ID: 32024872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prioritizing therapeutic targets using patient-derived xenograft models.
    Lodhia KA; Hadley AM; Haluska P; Scott CL
    Biochim Biophys Acta; 2015 Apr; 1855(2):223-34. PubMed ID: 25783201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patient-derived xenografts for childhood solid tumors: a valuable tool to test new drugs and personalize treatments.
    Zarzosa P; Navarro N; Giralt I; Molist C; Almazán-Moga A; Vidal I; Soriano A; Segura MF; Hladun R; Villanueva A; Gallego S; Roma J
    Clin Transl Oncol; 2017 Jan; 19(1):44-50. PubMed ID: 27718156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine.
    Zhu Z; Ihle NT; Rejto PA; Zarrinkar PP
    BMC Genomics; 2016 Jun; 17():455. PubMed ID: 27296290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Personalized Preclinical Trials in BRAF Inhibitor-Resistant Patient-Derived Xenograft Models Identify Second-Line Combination Therapies.
    Krepler C; Xiao M; Sproesser K; Brafford PA; Shannan B; Beqiri M; Liu Q; Xu W; Garman B; Nathanson KL; Xu X; Karakousis GC; Mills GB; Lu Y; Ahmed TA; Poulikakos PI; Caponigro G; Boehm M; Peters M; Schuchter LM; Weeraratna AT; Herlyn M
    Clin Cancer Res; 2016 Apr; 22(7):1592-602. PubMed ID: 26673799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of patient-derived liver cancer cells for phenotypic characterization and therapeutic target identification.
    Castven D; Becker D; Czauderna C; Wilhelm D; Andersen JB; Strand S; Hartmann M; Heilmann-Heimbach S; Roth W; Hartmann N; Straub BK; Mahn FL; Franck S; Pereira S; Haupts A; Vogel A; Wörns MA; Weinmann A; Heinrich S; Lang H; Thorgeirsson SS; Galle PR; Marquardt JU
    Int J Cancer; 2019 Jun; 144(11):2782-2794. PubMed ID: 30485423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient-Derived Xenograft Models of Epithelial Ovarian Cancer for Preclinical Studies.
    Heo EJ; Cho YJ; Cho WC; Hong JE; Jeon HK; Oh DY; Choi YL; Song SY; Choi JJ; Bae DS; Lee YY; Choi CH; Kim TJ; Park WY; Kim BG; Lee JW
    Cancer Res Treat; 2017 Oct; 49(4):915-926. PubMed ID: 28052650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Generation and Application of Patient-Derived Xenograft Model for Cancer Research.
    Jung J; Seol HS; Chang S
    Cancer Res Treat; 2018 Jan; 50(1):1-10. PubMed ID: 28903551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving drug response prediction by integrating multiple data sources: matrix factorization, kernel and network-based approaches.
    Güvenç Paltun B; Mamitsuka H; Kaski S
    Brief Bioinform; 2021 Jan; 22(1):346-359. PubMed ID: 31838491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current Update of Patient-Derived Xenograft Model for Translational Breast Cancer Research.
    Kawaguchi T; Foster BA; Young J; Takabe K
    J Mammary Gland Biol Neoplasia; 2017 Jun; 22(2):131-139. PubMed ID: 28451789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.