These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31695096)

  • 1. Evolutionary origin and functioning of pregenital abdominal outgrowths in a viviparous insect, Arixenia esau.
    Tworzydlo W; Jaglarz MK; Pardyak L; Bilinska B; Bilinski SM
    Sci Rep; 2019 Nov; 9(1):16090. PubMed ID: 31695096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphogenesis of serial abdominal outgrowths during development of the viviparous dermapteran, Arixenia esau (Insecta, Dermaptera).
    Bilinski SM; Tworzydlo W
    Arthropod Struct Dev; 2019 Mar; 49():62-69. PubMed ID: 30445116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excretion in the mother's body: modifications of the larval excretory system in the viviparous dermapteran, Arixenia esau.
    Jaglarz MK; Tworzydlo W; Bilinski SM
    Protoplasma; 2018 Nov; 255(6):1799-1809. PubMed ID: 29948364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viviparity in the dermapteran Arixenia esau: respiration inside mother's body requires both maternal and larval contribution.
    Jaglarz MK; Tworzydlo W; Rak A; Kotula-Balak M; Sekula M; Bilinski SM
    Protoplasma; 2019 Nov; 256(6):1573-1584. PubMed ID: 31218520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abdominal serial homologues of wings in Paleozoic insects.
    Prokop J; Rosová K; Krzemińska E; Krzemiński W; Nel A; Engel MS
    Curr Biol; 2022 Aug; 32(15):3414-3422.e1. PubMed ID: 35772407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viviparity in Two Closely Related Epizoic Dermapterans Relies on Disparate Modifications of Reproductive Systems and Embryogenesis.
    Bilinski SM; Jaglarz MK; Tworzydlo W
    Results Probl Cell Differ; 2019; 68():455-475. PubMed ID: 31598867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thoracic and abdominal outgrowths in early pterygotes: a clue to the common ancestor of winged insects?
    Prokop J; Rosová K; Leipner A; Sroka P
    Commun Biol; 2023 Dec; 6(1):1262. PubMed ID: 38087009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual evolutionary origin of insect wings supported by an investigation of the abdominal wing serial homologs in
    Linz DM; Tomoyasu Y
    Proc Natl Acad Sci U S A; 2018 Jan; 115(4):E658-E667. PubMed ID: 29317537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record.
    Kukalova-Peck J
    J Morphol; 1978 Apr; 156(1):53-125. PubMed ID: 30231597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insect morphological diversification through the modification of wing serial homologs.
    Ohde T; Yaginuma T; Niimi T
    Science; 2013 Apr; 340(6131):495-8. PubMed ID: 23493422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wing serial homologues and the diversification of insect outgrowths: insights from the pupae of scarab beetles.
    Hu Y; Moczek AP
    Proc Biol Sci; 2021 Jan; 288(1943):20202828. PubMed ID: 33467999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin and diversification of wings: Insights from a neopteran insect.
    Medved V; Marden JH; Fescemyer HW; Der JP; Liu J; Mahfooz N; Popadić A
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15946-51. PubMed ID: 26668365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tergal and pleural wing-related tissues in the German cockroach and their implication to the evolutionary origin of insect wings.
    Clark-Hachtel C; Fernandez-Nicolas A; Belles X; Tomoyasu Y
    Evol Dev; 2021 Mar; 23(2):100-116. PubMed ID: 33503322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embryos of the viviparous dermapteran, Arixenia esau develop sequentially in two compartments: terminal ovarian follicles and the uterus.
    Tworzydlo W; Kisiel E; Bilinski SM
    PLoS One; 2013; 8(5):e64087. PubMed ID: 23667700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The controversial origin of the abdominal appendage-like processes in immature insects: are they true segmental appendages or secondary outgrowths? (Arthropoda Hexapoda).
    Bitsch J
    J Morphol; 2012 Aug; 273(8):919-31. PubMed ID: 22549894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detailed analysis of the prothoracic tissues transforming into wings in the Cephalothorax mutants of the Tribolium beetle.
    Clark-Hachtel CM; Moe MR; Tomoyasu Y
    Arthropod Struct Dev; 2018 Jul; 47(4):352-361. PubMed ID: 29913217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New record of a phoretic flea associated with earwigs (Dermaptera, Arixeniidae) and a redescription of the bat flea
    Hastriter MW; Miller KB; Svenson GJ; Martin GJ; Whiting MF
    Zookeys; 2017; (657):67-79. PubMed ID: 28331409
    [No Abstract]   [Full Text] [Related]  

  • 18. Evolutionary origin of insect wings from ancestral gills.
    Averof M; Cohen SM
    Nature; 1997 Feb; 385(6617):627-30. PubMed ID: 9024659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What serial homologs can tell us about the origin of insect wings.
    Tomoyasu Y; Ohde T; Clark-Hachtel C
    F1000Res; 2017; 6():268. PubMed ID: 28357056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proximodistal subdivision of Drosophila legs and wings: the elbow-no ocelli gene complex.
    Weihe U; Dorfman R; Wernet MF; Cohen SM; Milán M
    Development; 2004 Feb; 131(4):767-74. PubMed ID: 14757638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.