BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31695747)

  • 1. Enhanced production of biomass and lipids by
    Toyama T; Hanaoka T; Yamada K; Suzuki K; Tanaka Y; Morikawa M; Mori K
    Biotechnol Biofuels; 2019; 12():205. PubMed ID: 31695747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth promotion of three microalgae,
    Toyama T; Kasuya M; Hanaoka T; Kobayashi N; Tanaka Y; Inoue D; Sei K; Morikawa M; Mori K
    Biotechnol Biofuels; 2018; 11():176. PubMed ID: 29983739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and Characterization of
    Rubiyatno ; Mori K; Inoue D; Kim S; Yu J; Lee T; Ike M; Toyama T
    Microorganisms; 2021 Jul; 9(7):. PubMed ID: 34361931
    [No Abstract]   [Full Text] [Related]  

  • 4. Enhanced production of microalgal biomass and lipid as an environmentally friendly biodiesel feedstock through actinomycete co-culture in biogas digestate effluent.
    Kumsiri B; Pekkoh J; Pathom-Aree W; Lumyong S; Phinyo K; Pumas C; Srinuanpan S
    Bioresour Technol; 2021 Oct; 337():125446. PubMed ID: 34175768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase leads to increases in biomass and wax ester production.
    Ogawa T; Tamoi M; Kimura A; Mine A; Sakuyama H; Yoshida E; Maruta T; Suzuki K; Ishikawa T; Shigeoka S
    Biotechnol Biofuels; 2015; 8():80. PubMed ID: 26056534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-culture of microalga Chlorella sorokiniana with syntrophic Streptomyces thermocarboxydus in cassava wastewater for wastewater treatment and biodiesel production.
    Padri M; Boontian N; Teaumroong N; Piromyou P; Piasai C
    Bioresour Technol; 2022 Mar; 347():126732. PubMed ID: 35074466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatty Acid Characterization and Biodiesel Production by the Marine Microalga Asteromonas gracilis: Statistical Optimization of Medium for Biomass and Lipid Enhancement.
    Fawzy MA
    Mar Biotechnol (NY); 2017 Jun; 19(3):219-231. PubMed ID: 28456869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microalgae growth-promoting bacteria for cultivation strategies: Recent updates and progress.
    Pathom-Aree W; Sattayawat P; Inwongwan S; Cheirsilp B; Liewtrakula N; Maneechote W; Rangseekaew P; Ahmad F; Mehmood MA; Gao F; Srinuanpan S
    Microbiol Res; 2024 Jun; 286():127813. PubMed ID: 38917638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of biomass yield and lipid accumulation of freshwater microalga Euglena gracilis by phenolic compounds from basic structures of lignin.
    Zhu J; Tan X; Hafid HS; Wakisaka M
    Bioresour Technol; 2021 Feb; 321():124441. PubMed ID: 33268047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possibility of co-culturing
    Takemura K; Endo R; Kitaya Y
    Environ Technol; 2020 Mar; 41(8):1007-1014. PubMed ID: 30149786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production.
    Kuo CM; Chen TY; Lin TH; Kao CY; Lai JT; Chang JS; Lin CS
    Bioresour Technol; 2015 Oct; 194():326-33. PubMed ID: 26210147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO
    Ameen F; Dawoud T; Alabdullatif J; Arif I
    Environ Res; 2023 Mar; 221():115251. PubMed ID: 36657592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of phytochemical vanillic acid on the growth and lipid accumulation of freshwater microalga Euglena gracilis.
    Tan X; Zhu J; Wakisaka M
    World J Microbiol Biotechnol; 2021 Nov; 37(12):217. PubMed ID: 34773155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodiesel production potential of mixed microalgal culture grown in domestic wastewater.
    Soydemir G; Keris-Sen UD; Sen U; Gurol MD
    Bioprocess Biosyst Eng; 2016 Jan; 39(1):45-51. PubMed ID: 26481921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High lipid accumulating bacteria isolated from dairy effluent scum grown on dairy wastewater as potential biodiesel feedstock.
    Behera AR; Dutta K; Verma P; Daverey A; Sahoo DK
    J Environ Manage; 2019 Dec; 252():109686. PubMed ID: 31606715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A low-cost technique for biodiesel production in Ankistrodesmus sp. EHY by using harvested microalgal effluent.
    Gu D; Xiao Q; Zhao Y; Yu X
    Sci Total Environ; 2023 Jan; 857(Pt 2):159461. PubMed ID: 36257437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced microalgal biomass and lipid production from a consortium of indigenous microalgae and bacteria present in municipal wastewater under gradually mixotrophic culture conditions.
    Cho HU; Kim YM; Park JM
    Bioresour Technol; 2017 Mar; 228():290-297. PubMed ID: 28081527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A strategic approach to apply bacterial substances for increasing metabolite productions of Euglena gracilis in the bioreactor.
    Kim DH; Kim JY; Oh JJ; Jeon MS; An HS; Jin CR; Choi YE
    Appl Microbiol Biotechnol; 2021 Jul; 105(13):5395-5406. PubMed ID: 34173846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous nutrition removal and high-efficiency biomass and lipid accumulation by microalgae using anaerobic digested effluent from cattle manure combined with municipal wastewater.
    Luo L; Ren H; Pei X; Xie G; Xing D; Dai Y; Ren N; Liu B
    Biotechnol Biofuels; 2019; 12():218. PubMed ID: 31528206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular tools and applications of Euglena gracilis: From biorefineries to bioremediation.
    Khatiwada B; Sunna A; Nevalainen H
    Biotechnol Bioeng; 2020 Dec; 117(12):3952-3967. PubMed ID: 32710635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.