BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31695749)

  • 21. Familial transmission of chromoanagenesis leads to unpredictable unbalanced rearrangements through meiotic recombination.
    Masson J; Pebrel-Richard C; Egloff M; Frétigny M; Beaumont M; Uguen K; Rollat-Farnier PA; Diguet F; Perthus I; Le Gudayer G; Haye D; Dupeyron MB; Putoux A; Raskin-Champion F; Till M; Chatron N; Doray B; Bardel C; Vinciguerra C; Sanlaville D; Schluth-Bolard C
    Clin Genet; 2023 Apr; 103(4):401-412. PubMed ID: 36576162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insight into the Molecular Basis Underlying Chromothripsis.
    Ostapińska K; Styka B; Lejman M
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genes, Proteins, and Biological Pathways Preventing Chromothripsis.
    Poot M
    Methods Mol Biol; 2018; 1769():231-251. PubMed ID: 29564828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromothripsis and ring chromosome 22: a paradigm of genomic complexity in the Phelan-McDermid syndrome (22q13 deletion syndrome).
    Kurtas N; Arrigoni F; Errichiello E; Zucca C; Maghini C; D'Angelo MG; Beri S; Giorda R; Bertuzzo S; Delledonne M; Xumerle L; Rossato M; Zuffardi O; Bonaglia MC
    J Med Genet; 2018 Apr; 55(4):269-277. PubMed ID: 29378768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid sequencing resolves two germline ultra-complex chromosomal rearrangements consisting of 137 breakpoint junctions in a single carrier.
    Eisfeldt J; Pettersson M; Petri A; Nilsson D; Feuk L; Lindstrand A
    Hum Genet; 2021 May; 140(5):775-790. PubMed ID: 33315133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome.
    Collins RL; Brand H; Redin CE; Hanscom C; Antolik C; Stone MR; Glessner JT; Mason T; Pregno G; Dorrani N; Mandrile G; Giachino D; Perrin D; Walsh C; Cipicchio M; Costello M; Stortchevoi A; An JY; Currall BB; Seabra CM; Ragavendran A; Margolin L; Martinez-Agosto JA; Lucente D; Levy B; Sanders SJ; Wapner RJ; Quintero-Rivera F; Kloosterman W; Talkowski ME
    Genome Biol; 2017 Mar; 18(1):36. PubMed ID: 28260531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromoanasynthesis is a common mechanism that leads to ERBB2 amplifications in a cohort of early stage HER2
    Vasmatzis G; Wang X; Smadbeck JB; Murphy SJ; Geiersbach KB; Johnson SH; Gaitatzes AG; Asmann YW; Kosari F; Borad MJ; Serie DJ; McLaughlin SA; Kachergus JM; Necela BM; Thompson EA
    BMC Cancer; 2018 Jul; 18(1):738. PubMed ID: 30005627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromoanasynthesis: another way for the formation of complex chromosomal abnormalities in human reproduction.
    Pellestor F; Gatinois V
    Hum Reprod; 2018 Aug; 33(8):1381-1387. PubMed ID: 30325427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complex X-Chromosomal Rearrangements in Two Women with Ovarian Dysfunction: Implications of Chromothripsis/Chromoanasynthesis-Dependent and -Independent Origins of Complex Genomic Alterations.
    Suzuki E; Shima H; Toki M; Hanew K; Matsubara K; Kurahashi H; Narumi S; Ogata T; Kamimaki T; Fukami M
    Cytogenet Genome Res; 2016; 150(2):86-92. PubMed ID: 28099951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A case with concurrent duplication, triplication, and uniparental isodisomy at 1q42.12-qter supporting microhomology-mediated break-induced replication model for replicative rearrangements.
    Kohmoto T; Okamoto N; Naruto T; Murata C; Ouchi Y; Fujita N; Inagaki H; Satomura S; Okamoto N; Saito M; Masuda K; Kurahashi H; Imoto I
    Mol Cytogenet; 2017; 10():15. PubMed ID: 28465723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Genomic Characteristics and Origin of Chromothripsis.
    Marcozzi A; Pellestor F; Kloosterman WP
    Methods Mol Biol; 2018; 1769():3-19. PubMed ID: 29564814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Congenital chromoanagenesis in the routine postnatal chromosomal microarray analyses.
    Villela D; Mazzonetto PC; Migliavacca MP; Perrone E; Guida G; Milanezi MFG; Jorge AAL; Ribeiro-Bicudo LA; Kok F; Campagnari F; de Rosso-Giuliani L; da Costa SS; Vianna-Morgante AM; Pearson PL; Krepischi ACV; Rosenberg C
    Am J Med Genet A; 2021 Aug; 185(8):2335-2344. PubMed ID: 33988290
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Very short DNA segments can be detected and handled by the repair machinery during germline chromothriptic chromosome reassembly.
    Slamova Z; Nazaryan-Petersen L; Mehrjouy MM; Drabova J; Hancarova M; Marikova T; Novotna D; Vlckova M; Vlckova Z; Bak M; Zemanova Z; Tommerup N; Sedlacek Z
    Hum Mutat; 2018 May; 39(5):709-716. PubMed ID: 29405539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements.
    Zhang CZ; Leibowitz ML; Pellman D
    Genes Dev; 2013 Dec; 27(23):2513-30. PubMed ID: 24298051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the Complexity of Mechanisms and Consequences of Chromothripsis: An Update.
    Koltsova AS; Pendina AA; Efimova OA; Chiryaeva OG; Kuznetzova TV; Baranov VS
    Front Genet; 2019; 10():393. PubMed ID: 31114609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cryptic breakpoint identified by whole-genome mate-pair sequencing in a rare paternally inherited complex chromosomal rearrangement.
    Aristidou C; Theodosiou A; Ketoni A; Bak M; Mehrjouy MM; Tommerup N; Sismani C
    Mol Cytogenet; 2018; 11():34. PubMed ID: 29930709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trisomy 1q24----1q41 in two sibs with an insertion in an inverted chromosome 4.
    Stoll C; Roth MP; Dott B
    J Med Genet; 1984 Apr; 21(2):133-5. PubMed ID: 6716413
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromoanagenesis Event Underlies a
    Grochowski CM; Krepischi ACV; Eisfeldt J; Du H; Bertola DR; Oliveira D; Costa SS; Lupski JR; Lindstrand A; Carvalho CMB
    Front Genet; 2021; 12():708348. PubMed ID: 34512724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Replicative and non-replicative mechanisms in the formation of clustered CNVs are indicated by whole genome characterization.
    Nazaryan-Petersen L; Eisfeldt J; Pettersson M; Lundin J; Nilsson D; Wincent J; Lieden A; Lovmar L; Ottosson J; Gacic J; Mäkitie O; Nordgren A; Vezzi F; Wirta V; Käller M; Hjortshøj TD; Jespersgaard C; Houssari R; Pignata L; Bak M; Tommerup N; Lundberg ES; Tümer Z; Lindstrand A
    PLoS Genet; 2018 Nov; 14(11):e1007780. PubMed ID: 30419018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A familial Cri-du-Chat/5p deletion syndrome resulted from rare maternal complex chromosomal rearrangements (CCRs) and/or possible chromosome 5p chromothripsis.
    Gu H; Jiang JH; Li JY; Zhang YN; Dong XS; Huang YY; Son XM; Lu X; Chen Z
    PLoS One; 2013; 8(10):e76985. PubMed ID: 24143197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.