BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 31696322)

  • 1. Reducing arsenic and groundwater contaminants down to safe level for drinking purposes via Fe
    Gurbuz F; Akpınar Ş; Ozcan S; Acet Ö; Odabaşı M
    Environ Monit Assess; 2019 Nov; 191(12):722. PubMed ID: 31696322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous removal of arsenic and fluoride from groundwater by coagulation-adsorption with polyaluminum chloride.
    Ingallinella AM; Pacini VA; Fernández RG; Vidoni RM; Sanguinetti G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(11):1288-96. PubMed ID: 21879862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: genesis, mobility and remediation.
    Alarcón-Herrera MT; Bundschuh J; Nath B; Nicolli HB; Gutierrez M; Reyes-Gomez VM; Nuñez D; Martín-Dominguez IR; Sracek O
    J Hazard Mater; 2013 Nov; 262():960-9. PubMed ID: 22920686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: Parametric and cost evaluation.
    Thakur LS; Mondal P
    J Environ Manage; 2017 Apr; 190():102-112. PubMed ID: 28040586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic adsorption on Fe-Mn modified granular activated carbon (GAC-FeMn): batch and fixed-bed column studies.
    Nikić J; Agbaba J; Watson MA; Tubić A; Šolić M; Maletić S; Dalmacija B
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(3):168-178. PubMed ID: 30688160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle assessment (LCA) of the arsenic and fluoride removal from groundwater through adsorption and electrocoagulation: A comparative study.
    Goyal H; Mondal P
    Chemosphere; 2022 Oct; 304():135243. PubMed ID: 35679977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laterite as a low-cost adsorbent in a sustainable decentralized filtration system to remove arsenic from groundwater in Vietnam.
    Nguyen TH; Tran HN; Vu HA; Trinh MV; Nguyen TV; Loganathan P; Vigneswaran S; Nguyen TM; Trinh VT; Vu DL; Nguyen THH
    Sci Total Environ; 2020 Jan; 699():134267. PubMed ID: 31677468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cost-effective system for in-situ geological arsenic adsorption from groundwater.
    Shan H; Ma T; Wang Y; Zhao J; Han H; Deng Y; He X; Dong Y
    J Contam Hydrol; 2013 Nov; 154():1-9. PubMed ID: 24035830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fate of low arsenic concentrations during full-scale aeration and rapid filtration.
    Gude JCJ; Rietveld LC; van Halem D
    Water Res; 2016 Jan; 88():566-574. PubMed ID: 26547752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination.
    Niazi NK; Bibi I; Shahid M; Ok YS; Burton ED; Wang H; Shaheen SM; Rinklebe J; Lüttge A
    Environ Pollut; 2018 Jan; 232():31-41. PubMed ID: 28966026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater.
    Gupta A; Chauhan VS; Sankararamakrishnan N
    Water Res; 2009 Aug; 43(15):3862-70. PubMed ID: 19577786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic and fluoride removal from contaminated drinking water with Haix-Fe-Zr and Haix-Zr resin beads.
    Phillips DH; Sen Gupta B; Mukhopadhyay S; Sen Gupta AK
    J Environ Manage; 2018 Jun; 215():132-142. PubMed ID: 29567553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Groundwater Arsenic Adsorption on Granular TiO2: Integrating Atomic Structure, Filtration, and Health Impact.
    Hu S; Shi Q; Jing C
    Environ Sci Technol; 2015 Aug; 49(16):9707-13. PubMed ID: 26198737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosorptive removal of inorganic arsenic species and fluoride from aqueous medium by the stem of Tecomella undulate.
    Brahman KD; Kazi TG; Baig JA; Afridi HI; Arain SS; Saraj S; Arain MB; Arain SA
    Chemosphere; 2016 May; 150():320-328. PubMed ID: 26921585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive transport modeling of subsurface arsenic removal systems in rural Bangladesh.
    Rahman MM; Bakker M; Patty CH; Hassan Z; Röling WF; Ahmed KM; van Breukelen BM
    Sci Total Environ; 2015 Dec; 537():277-93. PubMed ID: 26282762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics.
    Wei Y; Wei S; Liu C; Chen T; Tang Y; Ma J; Yin K; Luo S
    Water Res; 2019 Dec; 167():115107. PubMed ID: 31563708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Groundwater arsenic removal using granular TiO2: integrated laboratory and field study.
    Cui J; Du J; Yu S; Jing C; Chan T
    Environ Sci Pollut Res Int; 2015 Jun; 22(11):8224-34. PubMed ID: 25516251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments.
    Kim SH; Kim K; Ko KS; Kim Y; Lee KS
    Chemosphere; 2012 May; 87(8):851-6. PubMed ID: 22325979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenite removal from groundwater by iron-manganese oxides filter media: Behavior and mechanism.
    Cheng Y; Zhang S; Huang T; Li Y
    Water Environ Res; 2019 Jun; 91(6):536-545. PubMed ID: 30667121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.