These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31696984)

  • 1. Dual-Ionically Bound Single-Site Rhodium on Porous Ionic Polymer Rivals Commercial Methanol Carbonylation Catalysts.
    Ren Z; Lyu Y; Song X; Liu Y; Jiang Z; Lin R; Ding Y
    Adv Mater; 2019 Dec; 31(50):e1904976. PubMed ID: 31696984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Palladium and Ruthenium Dual-Single-Atom Sites on Porous Ionic Polymers for Acetylene Dialkoxycarbonylation: Synergetic Effects Stabilize the Active Site and Increase CO Adsorption.
    Li X; Wang J; Yuan Q; Song X; Mu J; Wei Y; Yan L; Sun F; Feng S; Cai Y; Jiang Z; Han Z; Ding Y
    Angew Chem Int Ed Engl; 2023 Aug; 62(33):e202307570. PubMed ID: 37310795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous Ionic Polymers as a Robust and Efficient Platform for Capture and Chemical Fixation of Atmospheric CO
    Sun Q; Jin Y; Aguila B; Meng X; Ma S; Xiao FS
    ChemSusChem; 2017 Mar; 10(6):1160-1165. PubMed ID: 27976539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Heterogenization of Salphen Coordination Complexes to Porous Organic Polymers: Catalysts for Ring-Expansion Carbonylation of Epoxides.
    Ganesan V; Yoon S
    Inorg Chem; 2020 Mar; 59(5):2881-2889. PubMed ID: 32048846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfur Poisoning and Self-Recovery of Single-Site Rh
    Feng S; Jiang M; Song X; Qiao P; Yan L; Cai Y; Li B; Li C; Ning L; Liu S; Zhang W; Wu G; Yang J; Dong W; Yang X; Jiang Z; Ding Y
    Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202304282. PubMed ID: 37159106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supported Dendrimer-Encapsulated Metal Clusters: Toward Heterogenizing Homogeneous Catalysts.
    Ye R; Zhukhovitskiy AV; Deraedt CV; Toste FD; Somorjai GA
    Acc Chem Res; 2017 Aug; 50(8):1894-1901. PubMed ID: 28704031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Metalated Porous Porphyrin Polymer with [Co(CO)
    Jiang J; Yoon S
    Sci Rep; 2018 Sep; 8(1):13243. PubMed ID: 30185794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanistic investigation into the elimination of phosphonium salts from rhodium-TRIPHOS complexes under methanol carbonylation conditions.
    Lamb GW; Clarke ML; Slawin AM; Williams B
    Dalton Trans; 2008 Sep; (36):4946-50. PubMed ID: 18766227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of C4 diphosphine ligands in rhodium catalysed methanol carbonylation under a syngas atmosphere: synthesis, structure, stability and reactivity of rhodium(I) carbonyl and rhodium(III) acetyl intermediates.
    Lamb G; Clarke M; Slawin AM; Williams B; Key L
    Dalton Trans; 2007 Dec; (47):5582-9. PubMed ID: 18043821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular metal catalysts on supports: organometallic chemistry meets surface science.
    Serna P; Gates BC
    Acc Chem Res; 2014 Aug; 47(8):2612-20. PubMed ID: 25036259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic encapsulation of a methanol carbonylation catalyst in a microporous metal-organic framework.
    Ivko SA; Bailey T; Brammer L; Haynes A
    Chem Commun (Camb); 2022 Oct; 58(80):11252-11255. PubMed ID: 36111597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Self-Supporting Strategy for Gas-Phase and Slurry-Phase Ethylene Polymerization using Late-Transition-Metal Catalysts.
    Dai S; Chen C
    Angew Chem Int Ed Engl; 2020 Aug; 59(35):14884-14890. PubMed ID: 32419295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First application of supported ionic liquid phase (SILP) catalysis for continuous methanol carbonylation.
    Riisager A; Jørgensen B; Wasserscheid P; Fehrmann R
    Chem Commun (Camb); 2006 Mar; (9):994-6. PubMed ID: 16491187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A stable rhodium single-site catalyst encapsulated within dendritic mesoporous nanochannels.
    Tian J; Yang D; Wen J; Filatov AS; Liu Y; Lei A; Lin XM
    Nanoscale; 2018 Jan; 10(3):1047-1055. PubMed ID: 29266147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account.
    Wu XF; Fang X; Wu L; Jackstell R; Neumann H; Beller M
    Acc Chem Res; 2014 Apr; 47(4):1041-53. PubMed ID: 24564478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-supported chiral catalysts for heterogeneous enantioselective reactions.
    Ding K; Wang Z; Wang X; Liang Y; Wang X
    Chemistry; 2006 Jul; 12(20):5188-97. PubMed ID: 16568490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biphosphine copolymer encapsulated single-site Rh catalyst for heterogeneous regioselective hydroaminomethylation of alkenes.
    Zhao K; Wang H; Wang X; Cui X; Shi F
    Chem Commun (Camb); 2022 Jul; 58(58):8093-8096. PubMed ID: 35766347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noble metal ionic catalysts.
    Hegde MS; Madras G; Patil KC
    Acc Chem Res; 2009 Jun; 42(6):704-12. PubMed ID: 19425544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyper-Cross-Linked Porous Porphyrin Aluminum(III) Tetracarbonylcobaltate as a Highly Active Heterogeneous Bimetallic Catalyst for the Ring-Expansion Carbonylation of Epoxides.
    Ganesan V; Yoon S
    ACS Appl Mater Interfaces; 2019 May; 11(20):18609-18616. PubMed ID: 31039304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.