BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31697017)

  • 1. Self-Assembling Supramolecular Hybrid Hydrogel Beads.
    Piras CC; Slavik P; Smith DK
    Angew Chem Int Ed Engl; 2020 Jan; 59(2):853-859. PubMed ID: 31697017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Propelling Hybrid Gels Incorporating an Active Self-Assembled, Low-Molecular-Weight Gelator.
    Piras CC; Smith DK
    Chemistry; 2021 Oct; 27(58):14527-14534. PubMed ID: 34339068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanically Robust Hybrid Gel Beads Loaded with "Naked" Palladium Nanoparticles as Efficient, Reusable, and Sustainable Catalysts for the Suzuki-Miyaura Reaction.
    Albino M; Burden TJ; Piras CC; Whitwood AC; Fairlamb IJS; Smith DK
    ACS Sustain Chem Eng; 2023 Feb; 11(5):1678-1689. PubMed ID: 36778525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Assembled Supramolecular Hybrid Hydrogel Beads Loaded with Silver Nanoparticles for Antimicrobial Applications.
    Piras CC; Mahon CS; Smith DK
    Chemistry; 2020 Jul; 26(38):8452-8457. PubMed ID: 32294272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembled low-molecular-weight gelator injectable microgel beads for delivery of bioactive agents.
    Piras CC; Kay AG; Genever PG; Smith DK
    Chem Sci; 2021 Feb; 12(11):3958-3965. PubMed ID: 34163666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shaping and Patterning Supramolecular Materials─Stem Cell-Compatible Dual-Network Hybrid Gels Loaded with Silver Nanoparticles.
    Piras CC; Mahon CS; Genever PG; Smith DK
    ACS Biomater Sci Eng; 2022 May; 8(5):1829-1840. PubMed ID: 35364810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Self-Assembled Gel Beads for Tuneable pH-Controlled Rosuvastatin Delivery.
    Piras CC; Patterson AK; Smith DK
    Chemistry; 2021 Sep; 27(52):13203-13210. PubMed ID: 34346527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially-resolved soft materials for controlled release - hybrid hydrogels combining a robust photo-activated polymer gel with an interactive supramolecular gel.
    Chivers PRA; Smith DK
    Chem Sci; 2017 Oct; 8(10):7218-7227. PubMed ID: 29081954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled gel tubes, filaments and 3D-printing with
    Piras CC; Kay AG; Genever PG; Fitremann J; Smith DK
    Chem Sci; 2022 Feb; 13(7):1972-1981. PubMed ID: 35308847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidomain hybrid hydrogels: spatially resolved photopatterned synthetic nanomaterials combining polymer and low-molecular-weight gelators.
    Cornwell DJ; Okesola BO; Smith DK
    Angew Chem Int Ed Engl; 2014 Nov; 53(46):12461-5. PubMed ID: 25146876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Palladium-scavenging self-assembled hybrid hydrogels - reusable highly-active green catalysts for Suzuki-Miyaura cross-coupling reactions.
    SlavĂ­k P; Kurka DW; Smith DK
    Chem Sci; 2018 Dec; 9(46):8673-8681. PubMed ID: 30647883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly Pattern of Supramolecular Hydrogel Induced by Lower Critical Solution Temperature Behavior of Low-Molecular-Weight Gelator.
    Wu S; Zhang Q; Deng Y; Li X; Luo Z; Zheng B; Dong S
    J Am Chem Soc; 2020 Jan; 142(1):448-455. PubMed ID: 31825602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabricating Shaped and Patterned Supramolecular Multigelator Objects via Diffusion-Adhesion Gel Assembly.
    Tangsombun C; Smith DK
    J Am Chem Soc; 2023 Nov; 145(44):24061-24070. PubMed ID: 37885219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic Gels for a Prebiotically Relevant Asymmetric Aldol Reaction in Water: From Organocatalyst Design to Hydrogel Discovery and Back Again.
    Hawkins K; Patterson AK; Clarke PA; Smith DK
    J Am Chem Soc; 2020 Mar; 142(9):4379-4389. PubMed ID: 32023044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wet spinning and radial self-assembly of a carbohydrate low molecular weight gelator into well organized hydrogel filaments.
    Chalard A; Joseph P; Souleille S; Lonetti B; Saffon-Merceron N; Loubinoux I; Vaysse L; Malaquin L; Fitremann J
    Nanoscale; 2019 Aug; 11(32):15043-15056. PubMed ID: 31179473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Low-Molecular-Weight Gelator Composed of Pyrene and Fluorene Moieties for Effective Charge Transfer in Supramolecular Ambidextrous Gel.
    Reddy SMM; Dorishetty P; Augustine G; Deshpande AP; Ayyadurai N; Shanmugam G
    Langmuir; 2017 Nov; 33(47):13504-13514. PubMed ID: 29135262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-component hybrid hydrogels - understanding the extent of orthogonal assembly and its impact on controlled release.
    Vieira VMP; Hay LL; Smith DK
    Chem Sci; 2017 Oct; 8(10):6981-6990. PubMed ID: 29147525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular Gel Formation Based on Glycolipids Derived from Renewable Resources.
    Lalitha K; Gayathri K; Prasad YS; Saritha R; Thamizhanban A; Maheswari CU; Sridharan V; Nagarajan S
    Gels; 2017 Dec; 4(1):. PubMed ID: 30674777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial and temporal diffusion-control of dynamic multi-domain self-assembled gels.
    Schlichter L; Piras CC; Smith DK
    Chem Sci; 2021 Feb; 12(11):4162-4172. PubMed ID: 34163689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of novel core-shell hybrid alginate hydrogel beads.
    Liu H; Wang C; Gao Q; Liu X; Tong Z
    Int J Pharm; 2008 Mar; 351(1-2):104-12. PubMed ID: 17964745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.