BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31697066)

  • 1. Freezing Facilitates Formation of Silver Nanoparticles under Natural and Simulated Sunlight Conditions.
    Tan Z; Guo X; Yin Y; Wang B; Bai Q; Li X; Liu J; Jiang G
    Environ Sci Technol; 2019 Dec; 53(23):13802-13811. PubMed ID: 31697066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmentally Relevant Freeze-Thaw Cycles Enhance the Redox-Mediated Morphological Changes of Silver Nanoparticles.
    Guo X; Yin Y; Tan Z; Liu J
    Environ Sci Technol; 2018 Jun; 52(12):6928-6935. PubMed ID: 29791804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sunlight-driven reduction of silver ion to silver nanoparticle by organic matter mitigates the acute toxicity of silver to Daphnia magna.
    Zhang Z; Yang X; Shen M; Yin Y; Liu J
    J Environ Sci (China); 2015 Sep; 35():62-68. PubMed ID: 26354693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly dynamic PVP-coated silver nanoparticles in aquatic environments: chemical and morphology change induced by oxidation of Ag(0) and reduction of Ag(+).
    Yu SJ; Yin YG; Chao JB; Shen MH; Liu JF
    Environ Sci Technol; 2014; 48(1):403-11. PubMed ID: 24328224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter-transformation between silver nanoparticles and Ag
    Liu Y; Li C; Luo S; Wang X; Zhang Q; Wu H
    Ecotoxicology; 2021 Sep; 30(7):1376-1385. PubMed ID: 33068202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sunlight-driven reduction of silver ions by natural organic matter: formation and transformation of silver nanoparticles.
    Hou WC; Stuart B; Howes R; Zepp RG
    Environ Sci Technol; 2013 Jul; 47(14):7713-21. PubMed ID: 23731169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.
    Zou X; Li P; Lou J; Fu X; Zhang H
    Environ Pollut; 2017 Nov; 230():674-682. PubMed ID: 28715772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological evolution and reconstruction of silver nanoparticles in aquatic environments: the roles of natural organic matter and light irradiation.
    Zou X; Shi J; Zhang H
    J Hazard Mater; 2015 Jul; 292():61-9. PubMed ID: 25795274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoreduction and stabilization capability of molecular weight fractionated natural organic matter in transformation of silver ion to metallic nanoparticle.
    Yin Y; Shen M; Zhou X; Yu S; Chao J; Liu J; Jiang G
    Environ Sci Technol; 2014 Aug; 48(16):9366-73. PubMed ID: 25050868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of light and Suwanee River Fulvic Acid on O
    Rong H; Garg S; Waite TD
    Environ Sci Technol; 2019 Jun; 53(12):6688-6698. PubMed ID: 31090416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Threshold Concentrations of Silver Ions Exist for the Sunlight-Induced Formation of Silver Nanoparticles in the Presence of Natural Organic Matter.
    Liu H; Gu X; Wei C; Fu H; Alvarez PJJ; Li Q; Zheng S; Qu X; Zhu D
    Environ Sci Technol; 2018 Apr; 52(7):4040-4050. PubMed ID: 29505247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of Ionic Silver by Sulfur Dioxide as a Source of Silver Nanoparticles in the Environment.
    Hao Z; Li F; Liu R; Zhou X; Mu Y; Sharma VK; Liu J; Jiang G
    Environ Sci Technol; 2021 Apr; 55(8):5569-5578. PubMed ID: 33683864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic role of iron in the formation of silver nanoparticles in photo-irradiated Ag
    Yin Y; Han D; Tai C; Tan Z; Zhou X; Yu S; Liu J; Jiang G
    Environ Pollut; 2017 Jun; 225():66-73. PubMed ID: 28351007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of Silver-Chloride Complexations in Sunlight-Driven Formation of Silver Nanoparticles.
    Singh A; Hou WC; Lin TF; Zepp RG
    Environ Sci Technol; 2019 Oct; 53(19):11162-11169. PubMed ID: 31479236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver nanoparticles coated with natural polysaccharides as models to study AgNP aggregation kinetics using UV-Visible spectrophotometry upon discharge in complex environments.
    Lodeiro P; Achterberg EP; Pampín J; Affatati A; El-Shahawi MS
    Sci Total Environ; 2016 Jan; 539():7-16. PubMed ID: 26363390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation of silver ions to silver nanoparticles mediated by humic acid under dark conditions at ambient temperature.
    Dong B; Liu G; Zhou J; Wang J; Jin R
    J Hazard Mater; 2020 Feb; 383():121190. PubMed ID: 31541953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability.
    Adegboyega NF; Sharma VK; Siskova K; Zbořil R; Sohn M; Schultz BJ; Banerjee S
    Environ Sci Technol; 2013 Jan; 47(2):757-64. PubMed ID: 23237319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sunlight mediated synthesis of silver nanoparticles using redox phytoprotein and their application in catalysis and colorimetric mercury sensing.
    Ahmed KB; Senthilnathan R; Megarajan S; Anbazhagan V
    J Photochem Photobiol B; 2015 Oct; 151():39-45. PubMed ID: 26163946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of light on toxicity of nanosilver to Tetrahymena pyriformis.
    Shi JP; Ma CY; Xu B; Zhang HW; Yu CP
    Environ Toxicol Chem; 2012 Jul; 31(7):1630-8. PubMed ID: 22553075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Humic acid-induced silver nanoparticle formation under environmentally relevant conditions.
    Akaighe N; Maccuspie RI; Navarro DA; Aga DS; Banerjee S; Sohn M; Sharma VK
    Environ Sci Technol; 2011 May; 45(9):3895-901. PubMed ID: 21456573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.