These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31697079)

  • 1. Frustrated and Allowed Structural Transitions: The Theory-Guided Discovery of the Modulated Structure of IrSi.
    Mitchell Warden HE; Fredrickson DC
    J Am Chem Soc; 2019 Dec; 141(49):19424-19435. PubMed ID: 31697079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallels in Structural Chemistry between the Molecular and Metallic Realms Revealed by Complex Intermetallic Phases.
    Fredrickson DC
    Acc Chem Res; 2018 Feb; 51(2):248-257. PubMed ID: 29384647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frustrated and Allowed Structural Transitions at the Limits of the BaAl
    Mitchell Warden HE; Lee SB; Fredrickson DC
    Inorg Chem; 2020 Jul; 59(14):10208-10222. PubMed ID: 32644782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The modulated structure of Co3Al4Si2: incommensurability and Co-Co interactions in search of filled octadecets.
    Fredrickson RT; Fredrickson DC
    Inorg Chem; 2013 Mar; 52(6):3178-89. PubMed ID: 23445378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Pressure-Driven Incommensurability in CaPd5: Clues to High-Pressure Chemistry Offered by Complex Intermetallics.
    Kilduff BJ; Fredrickson DC
    Inorg Chem; 2016 Jul; 55(13):6781-93. PubMed ID: 27327355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entropy-Driven Incommensurability: Chemical Pressure-Guided Polymorphism in PdBi and the Origins of Lock-In Phenomena in Modulated Systems.
    Folkers LC; Mitchell Warden HE; Fredrickson DC; Lidin S
    Inorg Chem; 2020 Apr; 59(7):4936-4949. PubMed ID: 32202768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paths to Stabilizing Electronically Aberrant Compounds: A Defect-Stabilized Polymorph and Constrained Atomic Motion in PtGa
    Mitchell Warden HE; Voyles PM; Fredrickson DC
    Inorg Chem; 2018 Nov; 57(21):13880-13894. PubMed ID: 30336002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic packing frustration in complex intermetallic structures: the role of chemical pressure in Ca2Ag7.
    Fredrickson DC
    J Am Chem Soc; 2011 Jul; 133(26):10070-3. PubMed ID: 21619054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergent Transitions: Discord between Electronic and Chemical Pressure Effects in the
    Lim A; Hilleke KP; Fredrickson DC
    Inorg Chem; 2023 Mar; 62(11):4405-4416. PubMed ID: 36595300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragmentation of the fluorite type in Fe8Al(17.4)Si(7.6): structural complexity in intermetallics dictated by the 18 electron rule.
    Fredrickson RT; Fredrickson DC
    Inorg Chem; 2012 Oct; 51(19):10341-9. PubMed ID: 22984870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entropic Control of Bonding, Guided by Chemical Pressure: Phase Transitions and 18-
    Lim A; Fredrickson DC
    Inorg Chem; 2023 Jul; 62(27):10833-10846. PubMed ID: 37350759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inducing Complexity in Intermetallics through Electron-Hole Matching: The Structure of Fe
    Peterson GGC; Yannello VJ; Fredrickson DC
    Angew Chem Int Ed Engl; 2017 Aug; 56(34):10145-10150. PubMed ID: 28503737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermetallic Reactivity: Ca
    Peterson GGC; Geisler EE; Fredrickson DC
    Inorg Chem; 2020 Apr; 59(7):5018-5029. PubMed ID: 32149506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DFT-chemical pressure analysis: visualizing the role of atomic size in shaping the structures of inorganic materials.
    Fredrickson DC
    J Am Chem Soc; 2012 Apr; 134(13):5991-9. PubMed ID: 22404343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Functionality of Complex Intermetallics: Frustration, Chemical Pressure Relief, and Potential Rattling Atoms in Y
    Guo Y; Fredrickson DC
    Inorg Chem; 2016 Oct; 55(20):10397-10405. PubMed ID: 27680537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization.
    Lin Q; Miller GJ
    Acc Chem Res; 2018 Jan; 51(1):49-58. PubMed ID: 29251496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress in Visualizing Atomic Size Effects with DFT-Chemical Pressure Analysis: From Isolated Atoms to Trends in AB5 Intermetallics.
    Berns VM; Engelkemier J; Guo Y; Kilduff BJ; Fredrickson DC
    J Chem Theory Comput; 2014 Aug; 10(8):3380-92. PubMed ID: 26588306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. As predicted and more: modulated channel occupation in YZn
    Fredrickson RT; Fredrickson DC
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2023 Aug; 79(Pt 4):320-329. PubMed ID: 37427849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Templating Structural Progessions in Intermetallics: How Chemical Pressure Directs Helix Formation in the Nowotny Chimney Ladders.
    Lu E; Fredrickson DC
    Inorg Chem; 2019 Apr; 58(7):4063-4066. PubMed ID: 30865438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communication between cation environments in aluminosilicate frameworks: incommensurately modulated crystal structure of an e-plagioclase.
    Fredrickson RT; Fredrickson DC
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2016 Oct; 72(Pt 5):787-801. PubMed ID: 27698321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.