These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31697172)

  • 1. Differentiation of Edible Oils by Type Using Raman Spectroscopy and Pattern Recognition Methods.
    Kwofie F; Lavine BK; Ottaway J; Booksh K
    Appl Spectrosc; 2020 Jun; 74(6):645-654. PubMed ID: 31697172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Fast discrimination of edible vegetable oil based on Raman spectroscopy].
    Zhou XJ; Dai LK; Li S
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jul; 32(7):1829-33. PubMed ID: 23016334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Raman spectroscopy in the rapid detection of waste cooking oil.
    Jin H; Li H; Yin Z; Zhu Y; Lu A; Zhao D; Li C
    Food Chem; 2021 Nov; 362():130191. PubMed ID: 34082292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study on Raman Spectra of Some Animal and Plant Oils].
    Wang X; Dai CJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Apr; 35(4):929-33. PubMed ID: 26197577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Discrimination of Edible Oil Type, Oxidation, and Adulteration by Liquid Interfacial Surface-Enhanced Raman Spectroscopy.
    Du S; Su M; Jiang Y; Yu F; Xu Y; Lou X; Yu T; Liu H
    ACS Sens; 2019 Jul; 4(7):1798-1805. PubMed ID: 31251024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification and adulteration detection of vegetable oils based on fatty acid profiles.
    Zhang L; Li P; Sun X; Wang X; Xu B; Wang X; Ma F; Zhang Q; Ding X
    J Agric Food Chem; 2014 Aug; 62(34):8745-51. PubMed ID: 25078260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct monitoring of lipid oxidation in edible oils by Fourier transform Raman spectroscopy.
    Muik B; Lendl B; Molina-Díaz A; Ayora-Cañada MJ
    Chem Phys Lipids; 2005 Apr; 134(2):173-82. PubMed ID: 15784235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The application of machine-learning and Raman spectroscopy for the rapid detection of edible oils type and adulteration.
    Zhao H; Zhan Y; Xu Z; John Nduwamungu J; Zhou Y; Powers R; Xu C
    Food Chem; 2022 Mar; 373(Pt B):131471. PubMed ID: 34749090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Research on prediction method of fatty acid content in edible oil based on Raman spectroscopy and multi-output least squares support vector regression machine].
    Deng ZY; Zhang B; Dong W; Wang XP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Nov; 33(11):2997-3001. PubMed ID: 24555368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of a spectral database for classification of edible oils using matrix-assisted laser desorption/ionization mass spectrometry.
    Ng TT; Li S; Ng CCA; So PK; Wong TF; Li ZY; Chan ST; Yao ZP
    Food Chem; 2018 Jun; 252():335-342. PubMed ID: 29478551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new direct Fourier transform infrared analysis of free fatty acids in edible oils using spectral reconstitution.
    Yu X; van de Voort FR; Sedman J; Gao JM
    Anal Bioanal Chem; 2011 Jul; 401(1):315-24. PubMed ID: 21556753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Raman spectroscopy combined with pattern recognition methods for rapid identification of crude soybean oil adulteration].
    Li BN; Wu YW; Wang Y; Zu WC; Chen SC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2696-700. PubMed ID: 25739210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid identification of flaxseed oil based on portable fiber optic Raman spectroscopy combined with an oil microscopy method.
    Su Y; Li Y; Tan C; Zeng R; Hua Y; Hu J; Wang L
    J Food Sci; 2022 Aug; 87(8):3407-3418. PubMed ID: 35781811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretation of Fourier transform Raman spectra of the unsaponifiable matter in a selection of edible oils.
    Baeten V; Dardenne P; Aparicio R
    J Agric Food Chem; 2001 Nov; 49(11):5098-107. PubMed ID: 11714288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct FTIR analysis of isolated trans fatty acids in edible oils using disposable polyethylene film.
    Xu L; Zhu X; Chen X; Sun D; Yu X
    Food Chem; 2015 Oct; 185():503-8. PubMed ID: 25952899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analysis of triacylglycerols and edible oils by near-infrared Fourier transform Raman spectroscopy.
    Weng YM; Weng RH; Tzeng CY; Chen W
    Appl Spectrosc; 2003 Apr; 57(4):413-8. PubMed ID: 14658638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of tert-butylhydroquinone in vegetable oils using surface-enhanced Raman spectroscopy.
    Pan Y; Lai K; Fan Y; Li C; Pei L; Rasco BA; Huang Y
    J Food Sci; 2014 Jun; 79(6):T1225-30. PubMed ID: 24784825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic studies on thermal degradation and quantitative prediction on acid value of edible oil during frying by Raman spectroscopy.
    Wang J; Lv J; Mei T; Xu M; Jia C; Duan C; Dai H; Liu X; Pi F
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 293():122477. PubMed ID: 36791663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-line near-infrared (NIR) and Raman spectroscopy coupled with principal component analysis (PCA) for in situ evaluation of the transesterification reaction.
    Fontalvo-Gómez M; Colucci JA; Velez N; Romañach RJ
    Appl Spectrosc; 2013 Oct; 67(10):1142-9. PubMed ID: 24067570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative determination of peroxide value of edible oil by algorithm-assisted liquid interfacial surface enhanced Raman spectroscopy.
    Jiang Y; Su M; Yu T; Du S; Liao L; Wang H; Wu Y; Liu H
    Food Chem; 2021 May; 344():128709. PubMed ID: 33272763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.