These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31697286)

  • 1. Bioengineering tunable porosity in bacterial nanocellulose matrices.
    Ashrafi Z; Lucia L; Krause W
    Soft Matter; 2019 Dec; 15(45):9359-9367. PubMed ID: 31697286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769.
    Jacek P; Ryngajłło M; Bielecki S
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5339-5353. PubMed ID: 31037382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Addition of Various Cellulosic Components to Bacterial Nanocellulose: A Comparison of Surface Qualities and Crystalline Properties.
    Bang WY; Kim DH; Kang MD; Yang J; Huh T; Lim YW; Jung YH
    J Microbiol Biotechnol; 2021 Oct; 31(10):1366-1372. PubMed ID: 34319261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of production process scale-up on the characteristics and properties of bacterial nanocellulose obtained from overripe Banana culture medium.
    Molina-Ramírez C; Cañas-Gutiérrez A; Castro C; Zuluaga R; Gañán P
    Carbohydr Polym; 2020 Jul; 240():116341. PubMed ID: 32475595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of plasmids in bacterial nanocellulose as gene activated matrix.
    Pötzinger Y; Rahnfeld L; Kralisch D; Fischer D
    Carbohydr Polym; 2019 Apr; 209():62-73. PubMed ID: 30732826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loading of bacterial nanocellulose hydrogels with proteins using a high-speed technique.
    Müller A; Wesarg F; Hessler N; Müller FA; Kralisch D; Fischer D
    Carbohydr Polym; 2014 Jun; 106():410-3. PubMed ID: 24721096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing nanocellulose foam into high-performance membranes for harvesting energy from nature.
    Zhang F; Li Y; Cai H; Liu Q; Tong G
    Carbohydr Polym; 2020 Aug; 241():116253. PubMed ID: 32507217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable composite of bacterial nanocellulose and perforated polypropylene mesh for biomedical applications.
    Ludwicka K; Kolodziejczyk M; Gendaszewska-Darmach E; Chrzanowski M; Jedrzejczak-Krzepkowska M; Rytczak P; Bielecki S
    J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):978-987. PubMed ID: 30261126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications.
    Le Bras D; Strømme M; Mihranyan A
    J Phys Chem B; 2015 May; 119(18):5911-7. PubMed ID: 25885570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of nanocellulose production by strains of Komagataeibacter sp. isolated from organic waste and Kombucha.
    Gupte Y; Kulkarni A; Raut B; Sarkar P; Choudhury R; Chawande A; Kumar GRK; Bhadra B; Satapathy A; Das G; Vishnupriya B; Dasgupta S
    Carbohydr Polym; 2021 Aug; 266():118176. PubMed ID: 34044916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas Permeability of Cellulose Aerogels with a Designed Dual Pore Space System.
    Ganesan K; Barowski A; Ratke L
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31344876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of nanocellulose scaffolds with tunable structures to support 3D cell culture.
    Liu J; Cheng F; Grénman H; Spoljaric S; Seppälä J; E Eriksson J; Willför S; Xu C
    Carbohydr Polym; 2016 Sep; 148():259-71. PubMed ID: 27185139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanocellulose in biomedical and biosensing applications: A review.
    Subhedar A; Bhadauria S; Ahankari S; Kargarzadeh H
    Int J Biol Macromol; 2021 Jan; 166():587-600. PubMed ID: 33130267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings.
    Powell LC; Khan S; Chinga-Carrasco G; Wright CJ; Hill KE; Thomas DW
    Carbohydr Polym; 2016 Feb; 137():191-197. PubMed ID: 26686120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering nanocellulose hydrogels for biomedical applications.
    Curvello R; Raghuwanshi VS; Garnier G
    Adv Colloid Interface Sci; 2019 May; 267():47-61. PubMed ID: 30884359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications.
    Xue Y; Mou Z; Xiao H
    Nanoscale; 2017 Oct; 9(39):14758-14781. PubMed ID: 28967940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of carbon sources from sugar industry to bacterial nanocellulose produced by Komagataeibacter xylinus.
    Jaroennonthasit W; Lam NT; Sukyai P
    Int J Biol Macromol; 2021 Nov; 191():299-304. PubMed ID: 34530037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile synthesis to tune size, textural properties and fiber density of dendritic fibrous nanosilica for applications in catalysis and CO
    Maity A; Belgamwar R; Polshettiwar V
    Nat Protoc; 2019 Jul; 14(7):2177-2204. PubMed ID: 31189974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrus pyrifolia fruit peel as sustainable source for spherical and porous network based nanocellulose synthesis via one-pot hydrolysis system.
    Chen YW; Hasanulbasori MA; Chiat PF; Lee HV
    Int J Biol Macromol; 2019 Feb; 123():1305-1319. PubMed ID: 30292586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Mini Review on Plant-based Nanocellulose: Production, Sources, Modifications and Its Potential in Drug Delivery Applications.
    Pachuau LS
    Mini Rev Med Chem; 2015; 15(7):543-52. PubMed ID: 25877601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.