These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31697286)

  • 21. Adhesion and Stability of Nanocellulose Coatings on Flat Polymer Films and Textiles.
    Saremi R; Borodinov N; Laradji AM; Sharma S; Luzinov I; Minko S
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ex Vivo and In Vivo Biocompatibility Assessment (Blood and Tissue) of Three-Dimensional Bacterial Nanocellulose Biomaterials for Soft Tissue Implants.
    Osorio M; Cañas A; Puerta J; Díaz L; Naranjo T; Ortiz I; Castro C
    Sci Rep; 2019 Jul; 9(1):10553. PubMed ID: 31332259
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of nanocellulose on mechanics and morphology of polyvinyl alcohol xerogels.
    Pramanik R; Ganivada B; Ram F; Shanmuganathan K; Arockiarajan A
    J Mech Behav Biomed Mater; 2019 Feb; 90():275-283. PubMed ID: 30388512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation of large-pore mesoporous nanocrystalline TiO2 thin films with tailored pore diameters.
    Liu K; Fu H; Shi K; Xiao F; Jing L; Xin B
    J Phys Chem B; 2005 Oct; 109(40):18719-22. PubMed ID: 16853408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic modification for enhancing bacterial cellulose production and its applications.
    Singhania RR; Patel AK; Tsai ML; Chen CW; Di Dong C
    Bioengineered; 2021 Dec; 12(1):6793-6807. PubMed ID: 34519629
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration.
    Caro-Astorga J; Walker KT; Herrera N; Lee KY; Ellis T
    Nat Commun; 2021 Aug; 12(1):5027. PubMed ID: 34413311
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosynthesis and in vitro evaluation of macroporous mineralized bacterial nanocellulose scaffolds for bone tissue engineering.
    Sundberg J; Götherström C; Gatenholm P
    Biomed Mater Eng; 2015; 25(1):39-52. PubMed ID: 25585979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative study of aerogels obtained from differently prepared nanocellulose fibers.
    Chen W; Li Q; Wang Y; Yi X; Zeng J; Yu H; Liu Y; Li J
    ChemSusChem; 2014 Jan; 7(1):154-61. PubMed ID: 24420495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A size-exclusion nanocellulose filter paper for virus removal.
    Metreveli G; Wågberg L; Emmoth E; Belák S; Strømme M; Mihranyan A
    Adv Healthc Mater; 2014 Oct; 3(10):1546-50, 1524. PubMed ID: 24687994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties.
    Seantier B; Bendahou D; Bendahou A; Grohens Y; Kaddami H
    Carbohydr Polym; 2016 Mar; 138():335-48. PubMed ID: 26794770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shear-induced unidirectional deposition of bacterial cellulose microfibrils using rising bubble stream cultivation.
    Chae I; Bokhari SMQ; Chen X; Zu R; Liu K; Borhan A; Gopalan V; Catchmark JM; Kim SH
    Carbohydr Polym; 2021 Mar; 255():117328. PubMed ID: 33436171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine.
    Moritz S; Wiegand C; Wesarg F; Hessler N; Müller FA; Kralisch D; Hipler UC; Fischer D
    Int J Pharm; 2014 Aug; 471(1-2):45-55. PubMed ID: 24792978
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel spider-web-like nanoporous networks based on jute cellulose nanowhiskers.
    Cao X; Wang X; Ding B; Yu J; Sun G
    Carbohydr Polym; 2013 Feb; 92(2):2041-7. PubMed ID: 23399256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Description of a novel approach to engineer cartilage with porous bacterial nanocellulose for reconstruction of a human auricle.
    Feldmann EM; Sundberg JF; Bobbili B; Schwarz S; Gatenholm P; Rotter N
    J Biomater Appl; 2013 Nov; 28(4):626-40. PubMed ID: 23413229
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents.
    Korhonen JT; Kettunen M; Ras RH; Ikkala O
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1813-6. PubMed ID: 21627309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates.
    Korhonen JT; Hiekkataipale P; Malm J; Karppinen M; Ikkala O; Ras RH
    ACS Nano; 2011 Mar; 5(3):1967-74. PubMed ID: 21361349
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphology and pore characteristics of bacterial cellulose/multiwalled carbon nanotube composite cryogels.
    Yun YS; Bak H; Cho SY; Jin HJ
    J Nanosci Nanotechnol; 2011 Jan; 11(1):806-9. PubMed ID: 21446550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D printing process of oxidized nanocellulose and gelatin scaffold.
    Xu X; Zhou J; Jiang Y; Zhang Q; Shi H; Liu D
    J Biomater Sci Polym Ed; 2018 Aug; 29(12):1498-1513. PubMed ID: 29716440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Morphology and structure characterization of bacterial celluloses produced by different strains in agitated culture.
    Bi JC; Liu SX; Li CF; Li J; Liu LX; Deng J; Yang YC
    J Appl Microbiol; 2014 Nov; 117(5):1305-11. PubMed ID: 25098972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nondestructive technique for the characterization of the pore size distribution of soft porous constructs for tissue engineering.
    Safinia L; Mantalaris A; Bismarck A
    Langmuir; 2006 Mar; 22(7):3235-42. PubMed ID: 16548583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.