These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31697315)

  • 1. MDiNE: a model to estimate differential co-occurrence networks in microbiome studies.
    McGregor K; Labbe A; Greenwood CMT
    Bioinformatics; 2020 Mar; 36(6):1840-1847. PubMed ID: 31697315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning a mixture of microbial networks using minorization-maximization.
    Tavakoli S; Yooseph S
    Bioinformatics; 2019 Jul; 35(14):i23-i30. PubMed ID: 31510709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential network connectivity analysis for microbiome data adjusted for clinical covariates using jackknife pseudo-values.
    Ahn S; Datta S
    BMC Bioinformatics; 2024 Mar; 25(1):117. PubMed ID: 38500042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NetCoMi: network construction and comparison for microbiome data in R.
    Peschel S; Müller CL; von Mutius E; Boulesteix AL; Depner M
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33264391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SOHPIE: statistical approach via pseudo-value information and estimation for differential network analysis of microbiome data.
    Ahn S; Datta S
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38134422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation and differential abundance analysis of microbiome data incorporating phylogeny.
    Zhou C; Zhao H; Wang T
    Bioinformatics; 2021 Dec; 37(24):4652-4660. PubMed ID: 34302462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Batch effects correction for microbiome data with Dirichlet-multinomial regression.
    Dai Z; Wong SH; Yu J; Wei Y
    Bioinformatics; 2019 Mar; 35(5):807-814. PubMed ID: 30816927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CACONET: a novel classification framework for microbial correlation networks.
    Xu Y; Nash K; Acharjee A; Gkoutos GV
    Bioinformatics; 2022 Mar; 38(6):1639-1647. PubMed ID: 34983063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A compositional mediation model for a binary outcome: Application to microbiome studies.
    Sohn MB; Lu J; Li H
    Bioinformatics; 2021 Dec; 38(1):16-21. PubMed ID: 34415327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel normalization and differential abundance test framework for microbiome data.
    Ma Y; Luo Y; Jiang H
    Bioinformatics; 2020 Jul; 36(13):3959-3965. PubMed ID: 32311021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic abundances in microbiome data.
    Wadsworth WD; Argiento R; Guindani M; Galloway-Pena J; Shelburne SA; Vannucci M
    BMC Bioinformatics; 2017 Feb; 18(1):94. PubMed ID: 28178947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential Co-Abundance Network Analyses for Microbiome Data Adjusted for Clinical Covariates Using Jackknife Pseudo-Values.
    Ahn S; Datta S
    ArXiv; 2023 Mar; ():. PubMed ID: 36994149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating and testing the microbial causal mediation effect with high-dimensional and compositional microbiome data.
    Wang C; Hu J; Blaser MJ; Li H
    Bioinformatics; 2020 Jan; 36(2):347-355. PubMed ID: 31329243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compositional zero-inflated network estimation for microbiome data.
    Ha MJ; Kim J; Galloway-Peña J; Do KA; Peterson CB
    BMC Bioinformatics; 2020 Dec; 21(Suppl 21):581. PubMed ID: 33371887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting microbiomes through a deep latent space.
    García-Jiménez B; Muñoz J; Cabello S; Medina J; Wilkinson MD
    Bioinformatics; 2021 Jun; 37(10):1444-1451. PubMed ID: 33289510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct interaction network inference for compositional data via codaloss.
    Chen L; He S; Zhai Y; Deng M
    J Bioinform Comput Biol; 2020 Dec; 18(6):2050037. PubMed ID: 33106076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. JDINAC: joint density-based non-parametric differential interaction network analysis and classification using high-dimensional sparse omics data.
    Ji J; He D; Feng Y; He Y; Xue F; Xie L
    Bioinformatics; 2017 Oct; 33(19):3080-3087. PubMed ID: 28582486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sparse least trimmed squares regression with compositional covariates for high-dimensional data.
    Monti GS; Filzmoser P
    Bioinformatics; 2021 Nov; 37(21):3805-3814. PubMed ID: 34358286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian Variable Shrinkage and Selection in Compositional Data Regression: Application to Oral Microbiome.
    Datta J; Bandyopadhyay D
    J Indian Soc Probab Stat; 2024; 25(2):491-515. PubMed ID: 39403125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Umibato: estimation of time-varying microbial interaction using continuous-time regression hidden Markov model.
    Hosoda S; Fukunaga T; Hamada M
    Bioinformatics; 2021 Jul; 37(Suppl_1):i16-i24. PubMed ID: 34252954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.