These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 31697407)

  • 1. Improving the justice-based argument for conducting human gene editing research to cure sickle cell disease.
    Chan B
    Bioethics; 2020 Feb; 34(2):200-202. PubMed ID: 31697407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A justice-based argument for including sickle cell disease in CRISPR/Cas9 clinical research.
    Baffoe-Bonnie MS
    Bioethics; 2019 Jul; 33(6):661-668. PubMed ID: 31107563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-based gene-editing technology for sickle cell disease.
    Ma L; Yang S; Peng Q; Zhang J; Zhang J
    Gene; 2023 Jul; 874():147480. PubMed ID: 37182559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9 gene editing for curing sickle cell disease.
    Park SH; Bao G
    Transfus Apher Sci; 2021 Feb; 60(1):103060. PubMed ID: 33455878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing.
    Wen J; Tao W; Hao S; Zu Y
    J Hematol Oncol; 2017 Jun; 10(1):119. PubMed ID: 28610635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9 for Sickle Cell Disease: Applications, Future Possibilities, and Challenges.
    Demirci S; Leonard A; Haro-Mora JJ; Uchida N; Tisdale JF
    Adv Exp Med Biol; 2019; 1144():37-52. PubMed ID: 30715679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Justice in CRISPR/Cas9 Research and Clinical Applications.
    Hildebrandt CC; Marron JM
    AMA J Ethics; 2018 Sep; 20(9):E826-833. PubMed ID: 30242813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patenting Foundational Technologies: Lessons From CRISPR and Other Core Biotechnologies.
    Feeney O; Cockbain J; Morrison M; Diependaele L; Van Assche K; Sterckx S
    Am J Bioeth; 2018 Dec; 18(12):36-48. PubMed ID: 31159699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9 system and its applications in human hematopoietic cells.
    Hu X
    Blood Cells Mol Dis; 2016 Nov; 62():6-12. PubMed ID: 27736664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease.
    Cai L; Bai H; Mahairaki V; Gao Y; He C; Wen Y; Jin YC; Wang Y; Pan RL; Qasba A; Ye Z; Cheng L
    Stem Cells Transl Med; 2018 Jan; 7(1):87-97. PubMed ID: 29164808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia.
    Ye L; Wang J; Tan Y; Beyer AI; Xie F; Muench MO; Kan YW
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10661-5. PubMed ID: 27601644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR in personalized medicine: Industry perspectives in gene editing.
    Hong A
    Semin Perinatol; 2018 Dec; 42(8):501-507. PubMed ID: 30376985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CRISPR focus on attitudes and beliefs toward somatic genome editing from stakeholders within the sickle cell disease community.
    Persaud A; Desine S; Blizinsky K; Bonham VL
    Genet Med; 2019 Aug; 21(8):1726-1734. PubMed ID: 30581191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging Genetic Therapy for Sickle Cell Disease.
    Orkin SH; Bauer DE
    Annu Rev Med; 2019 Jan; 70():257-271. PubMed ID: 30355263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas9 System for Genome Engineering of Photosynthetic Microalgae.
    Patel VK; Soni N; Prasad V; Sapre A; Dasgupta S; Bhadra B
    Mol Biotechnol; 2019 Aug; 61(8):541-561. PubMed ID: 31140149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Prospecting application of CRISPR/Cas9 genome editing technology in research of medicinal plants].
    Hu TY; Gao W; Huang LQ
    Zhongguo Zhong Yao Za Zhi; 2016 Aug; 41(16):2953-2957. PubMed ID: 28920331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene therapy for sickle cell disease.
    The Lancet Haematology
    Lancet Haematol; 2016 Oct; 3(10):e446. PubMed ID: 27692301
    [No Abstract]   [Full Text] [Related]  

  • 18. CRISPR/Cas System for Genome Editing: Progress and Prospects as a Therapeutic Tool.
    Sahel DK; Mittal A; Chitkara D
    J Pharmacol Exp Ther; 2019 Sep; 370(3):725-735. PubMed ID: 31122933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress in CRISPR/Cas9 Technology.
    Mei Y; Wang Y; Chen H; Sun ZS; Ju XD
    J Genet Genomics; 2016 Feb; 43(2):63-75. PubMed ID: 26924689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery.
    Wang HX; Li M; Lee CM; Chakraborty S; Kim HW; Bao G; Leong KW
    Chem Rev; 2017 Aug; 117(15):9874-9906. PubMed ID: 28640612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.