These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31697489)

  • 21. The influence of dissolved Si on Ni precipitate formation at the kaolinite water interface: Kinetics, DRS and EXAFS analysis.
    Tan X; Liu G; Mei H; Fang M; Ren X; Chen C
    Chemosphere; 2017 Apr; 173():135-142. PubMed ID: 28107711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of metal-adsorption behaviour in the remediation of water contamination using indigenous microorganisms.
    Fosso-Kankeu E; Mulaba-Bafubiandi AF; Mamba BB; Barnard TG
    J Environ Manage; 2011 Oct; 92(10):2786-93. PubMed ID: 21737198
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of heavy metal sorption on alkaline clays from Tundulu in Malawi as determined by EXAFS.
    Sajidu SM; Persson I; Masamba WR; Henry EM
    J Hazard Mater; 2008 Oct; 158(2-3):401-9. PubMed ID: 18329799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Equilibrium analysis for heavy metal cation removal using cement kiln dust.
    El Zayat M; Elagroudy S; El Haggar S
    Water Sci Technol; 2014; 70(6):1011-8. PubMed ID: 25259489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New insights into the influence of heavy metals on phenanthrene sorption in soils.
    Luo L; Zhang S; Christie P
    Environ Sci Technol; 2010 Oct; 44(20):7846-51. PubMed ID: 20828209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and application of a ternary composite of clay, saw-dust and peanut husks in heavy metal adsorption.
    Mungondori HH; Mtetwa S; Tichagwa L; Katwire DM; Nyamukamba P
    Water Sci Technol; 2017 May; 75(10):2443-2453. PubMed ID: 28541952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cu(II) and Zn(II) adsorption capacity of three different clay liner materials.
    Musso TB; Parolo ME; Pettinari G; Francisca FM
    J Environ Manage; 2014 Dec; 146():50-58. PubMed ID: 25156265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of malachite green by adsorption and precipitation using aminopropyl functionalized magnesium phyllosilicate.
    Lee YC; Kim EJ; Yang JW; Shin HJ
    J Hazard Mater; 2011 Aug; 192(1):62-70. PubMed ID: 21616589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoscale zero-valent iron functionalized Posidonia oceanica marine biomass for heavy metal removal from water.
    Boubakri S; Djebbi MA; Bouaziz Z; Namour P; Ben Haj Amara A; Ghorbel-Abid I; Kalfat R
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):27879-27896. PubMed ID: 28988320
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of quaternary ammonium cation loading and pH on heavy metal sorption to Ca bentonite and two organobentonites.
    Oyanedel-Craver VA; Smith JA
    J Hazard Mater; 2006 Sep; 137(2):1102-14. PubMed ID: 16647204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal cation saturation on montmorillonites facilitates the adsorption of DNA via cation bridging.
    Sheng X; Qin C; Yang B; Hu X; Liu C; Waigi MG; Li X; Ling W
    Chemosphere; 2019 Nov; 235():670-678. PubMed ID: 31276880
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetics of the Formation and Dissolution of Ni Precipitates in a Gibbsite/Amorphous Silica Mixture.
    Scheckel KG; Sparks DL
    J Colloid Interface Sci; 2000 Sep; 229(1):222-229. PubMed ID: 10942563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential use of lateritic and marine clay soils as landfill liners to retain heavy metals.
    Chalermyanont T; Arrykul S; Charoenthaisong N
    Waste Manag; 2009 Jan; 29(1):117-27. PubMed ID: 18550353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Slow formation and dissolution of Zn precipitates in soil: a combined column-transport and XAFS study.
    Voegelin A; Scheinost AC; Bühlmann K; Barmettler K; Kretzschmar R
    Environ Sci Technol; 2002 Sep; 36(17):3749-54. PubMed ID: 12322747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reducement of cadmium adsorption on clay minerals by the presence of dissolved organic matter from animal manure.
    Zhou W; Ren L; Zhu L
    Environ Pollut; 2017 Apr; 223():247-254. PubMed ID: 28108163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of carbohydrate strands in water and interactions with clay minerals: influence of pH, surface chemistry, and electrolytes.
    Jamil T; Gissinger JR; Garley A; Saikia N; Upadhyay AK; Heinz H
    Nanoscale; 2019 Jun; 11(23):11183-11194. PubMed ID: 31150033
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heavy metals binding properties of esterified lemon.
    Arslanoglu H; Altundogan HS; Tumen F
    J Hazard Mater; 2009 May; 164(2-3):1406-13. PubMed ID: 18980807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insights into tetrabromobisphenol A adsorption onto soils: Effects of soil components and environmental factors.
    Tong F; Gu X; Gu C; Ji R; Tan Y; Xie J
    Sci Total Environ; 2015 Dec; 536():582-588. PubMed ID: 26247687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectroscopic Evidence for the Formation of Mixed-Cation Hydroxide Phases upon Metal Sorption on Clays and Aluminum Oxides.
    Scheidegger AM; Lamble GM; Sparks DL
    J Colloid Interface Sci; 1997 Feb; 186(1):118-28. PubMed ID: 9056314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clay based nanocomposites for removal of heavy metals from water: A review.
    Yadav VB; Gadi R; Kalra S
    J Environ Manage; 2019 Feb; 232():803-817. PubMed ID: 30529868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.