BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31697498)

  • 1. Organocatalytic Reductive Propargylation: Scope and Applications.
    Pasha MA; Krishna AV; Ashok E; Ramachary DB
    J Org Chem; 2019 Dec; 84(23):15399-15416. PubMed ID: 31697498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular Access to Chiral 2,3-Dihydrofurans and 3,4-Dihydro-2 H-pyrans by Stereospecific Activation of Formylcyclopropanes through Combination of Organocatalytic Reductive Coupling and Lewis-Acid-Catalyzed Annulative Ring-Opening Reactions.
    Peraka S; Hussain A; Ramachary DB
    J Org Chem; 2018 Sep; 83(17):9795-9817. PubMed ID: 30107129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Organocatalytic Chemoselective Reductive Alkylation of Chiral 2-Aroylcyclopropanecarbaldehydes: Scope and Applications.
    Hussain A; Ramachary DB
    J Org Chem; 2023 Jul; 88(13):8069-8092. PubMed ID: 37226101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organocatalytic Reductive Amination of the Chiral Formylcyclopropanes: Scope and Applications.
    Hussain A; Peraka S; Ramachary DB
    J Org Chem; 2023 Dec; 88(23):16047-16064. PubMed ID: 37948127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organocatalytic sequential one-pot double cascade asymmetric synthesis of Wieland-Miescher ketone analogues from a Knoevenagel/hydrogenation/Robinson annulation sequence: scope and applications of organocatalytic biomimetic reductions.
    Ramachary DB; Kishor M
    J Org Chem; 2007 Jul; 72(14):5056-68. PubMed ID: 17552564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cobalt catalysis involving π components in organic synthesis.
    Gandeepan P; Cheng CH
    Acc Chem Res; 2015 Apr; 48(4):1194-206. PubMed ID: 25854540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards organo-click chemistry: development of organocatalytic multicomponent reactions through combinations of aldol, Wittig, Knoevenagel, Michael, Diels-Alder and Huisgen cycloaddition reactions.
    Ramachary DB; Barbas CF
    Chemistry; 2004 Oct; 10(21):5323-31. PubMed ID: 15390208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct amino acid-catalyzed cascade biomimetic reductive alkylations: application to the asymmetric synthesis of Hajos-Parrish ketone analogues.
    Ramachary DB; Kishor M
    Org Biomol Chem; 2008 Nov; 6(22):4176-87. PubMed ID: 18972048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cu-catalyzed, Mn-mediated propargylation and allenylation of aldehydes with propargyl bromides.
    Zhang R; Xia Y; Yan Y; Ouyang L
    BMC Chem; 2022 Mar; 16(1):14. PubMed ID: 35303949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct catalytic asymmetric synthesis of highly functionalized (2-ethynylphenyl)alcohols via Barbas-List aldol reaction: scope and synthetic applications.
    Ramachary DB; Mondal R; Madhavachary R
    Org Biomol Chem; 2012 Jul; 10(26):5094-101. PubMed ID: 22614462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arabinogalactan propargyl ethers in the A
    Grishchenko LA; Parshina LN; Larina LI; Belovezhetz LA; Trofimov BA
    Carbohydr Polym; 2023 Jan; 300():120239. PubMed ID: 36372475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-yielding sequential one-pot synthesis of chiral and achiral α-substituted acrylates via a metal-free reductive coupling reaction.
    Ramachary DB; Venkaiah C; Reddy YV
    Org Biomol Chem; 2014 Aug; 12(29):5400-6. PubMed ID: 24934801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver(I)-Catalyzed Reductive Cross-Coupling of Aldehydes to Structurally Diverse Cyclic and Acyclic Ethers.
    Liang T; Dong G; Li C; Xu X; Xu Z
    Org Lett; 2022 Mar; 24(9):1817-1821. PubMed ID: 35225622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lanthanide-Catalyzed Oxyfunctionalization of 1,3-Diketones, Acetoacetic Esters, And Malonates by Oxidative C-O Coupling with Malonyl Peroxides.
    Terent'ev AO; Vil' VA; Gorlov ES; Nikishin GI; Pivnitsky KK; Adam W
    J Org Chem; 2016 Feb; 81(3):810-23. PubMed ID: 26745010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Biomass-Derived Ethers for Use as Fuels and Lubricants.
    Rorrer JE; Bell AT; Toste FD
    ChemSusChem; 2019 Jul; 12(13):2835-2858. PubMed ID: 31232521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scandium-catalyzed propargylation of 1,3-diketones with propargyl alcohols bearing sulfur or selenium functional groups: useful transformation to furans and pyrans.
    Ohta K; Kobayashi T; Tanabe G; Muraoka O; Yoshimatsu M
    Chem Pharm Bull (Tokyo); 2010 Sep; 58(9):1180-6. PubMed ID: 20823597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Merging Visible Light Photoredox and Gold Catalysis.
    Hopkinson MN; Tlahuext-Aca A; Glorius F
    Acc Chem Res; 2016 Oct; 49(10):2261-2272. PubMed ID: 27610939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general approach to chiral building blocks via direct amino acid-catalyzed cascade three-component reductive alkylations: formal total synthesis of HIV-1 protease inhibitors, antibiotic agglomerins, brefeldin A, and (R)-gamma-hexanolide.
    Ramachary DB; Vijayendar Reddy Y
    J Org Chem; 2010 Jan; 75(1):74-85. PubMed ID: 19954143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.
    Park YJ; Park JW; Jun CH
    Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ruthenium-catalyzed propargylation of aromatic compounds with propargylic alcohols.
    Nishibayashi Y; Yoshikawa M; Inada Y; Hidai M; Uemura S
    J Am Chem Soc; 2002 Oct; 124(40):11846-7. PubMed ID: 12358517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.