These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31697541)

  • 1. Phonon-Induced Enhancement of Photon Entanglement in Quantum Dot-Cavity Systems.
    Seidelmann T; Ungar F; Barth AM; Vagov A; Axt VM; Cygorek M; Kuhn T
    Phys Rev Lett; 2019 Sep; 123(13):137401. PubMed ID: 31697541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon-assisted decoherence in the production of polarization-entangled photons in a single semiconductor quantum dot.
    Hohenester U; Pfanner G; Seliger M
    Phys Rev Lett; 2007 Jul; 99(4):047402. PubMed ID: 17678402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing Phonon-Induced Decoherence in Solid-State Single-Photon Sources with Cavity Quantum Electrodynamics.
    Grange T; Somaschi N; Antón C; De Santis L; Coppola G; Giesz V; Lemaître A; Sagnes I; Auffèves A; Senellart P
    Phys Rev Lett; 2017 Jun; 118(25):253602. PubMed ID: 28696749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cavity-assisted emission of polarization-entangled photons from biexcitons in quantum dots with fine-structure splitting.
    Schumacher S; Förstner J; Zrenner A; Florian M; Gies C; Gartner P; Jahnke F
    Opt Express; 2012 Feb; 20(5):5335-42. PubMed ID: 22418340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering the Impact of Phonon Dephasing on the Coherence of a WSe_{2} Single-Photon Source via Cavity Quantum Electrodynamics.
    Mitryakhin VN; Steinhoff A; Drawer JC; Shan H; Florian M; Lackner L; Han B; Eilenberger F; Tongay SA; Watanabe K; Taniguchi T; Antón-Solanas C; Predojević A; Gies C; Esmann M; Schneider C
    Phys Rev Lett; 2024 May; 132(20):206903. PubMed ID: 38829069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum decoherence in finite size exciton-phonon systems.
    Pouthier V
    J Chem Phys; 2011 Mar; 134(11):114516. PubMed ID: 21428641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnon-Photon-Phonon Entanglement in Cavity Magnomechanics.
    Li J; Zhu SY; Agarwal GS
    Phys Rev Lett; 2018 Nov; 121(20):203601. PubMed ID: 30500215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy transfer in finite-size exciton-phonon systems: confinement-enhanced quantum decoherence.
    Pouthier V
    J Chem Phys; 2012 Sep; 137(11):114702. PubMed ID: 22998276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum entanglement and one-way steering in a cavity magnomechanical system via a squeezed vacuum field.
    Zhang W; Wang T; Han X; Zhang S; Wang HF
    Opt Express; 2022 Mar; 30(7):10969-10980. PubMed ID: 35473050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes.
    Qian C; Wu S; Song F; Peng K; Xie X; Yang J; Xiao S; Steer MJ; Thayne IG; Tang C; Zuo Z; Jin K; Gu C; Xu X
    Phys Rev Lett; 2018 May; 120(21):213901. PubMed ID: 29883144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity.
    Chen JC; Sato Y; Kosaka R; Hashisaka M; Muraki K; Fujisawa T
    Sci Rep; 2015 Oct; 5():15176. PubMed ID: 26469629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distant entanglement via photon hopping in a coupled cavity magnomechanical system.
    Sohail A; Peng JX; Hidki A; Khalid M; Singh SK
    Sci Rep; 2023 Dec; 13(1):21840. PubMed ID: 38071389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherence of an entangled exciton-photon state.
    Hudson AJ; Stevenson RM; Bennett AJ; Young RJ; Nicoll CA; Atkinson P; Cooper K; Ritchie DA; Shields AJ
    Phys Rev Lett; 2007 Dec; 99(26):266802. PubMed ID: 18233599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optically driven quantum dots as source of coherent cavity phonons: a proposal for a phonon laser scheme.
    Kabuss J; Carmele A; Brandes T; Knorr A
    Phys Rev Lett; 2012 Aug; 109(5):054301. PubMed ID: 23006175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Phonons on Dephasing of Individual Excitons in Deterministic Quantum Dot Microlenses.
    Jakubczyk T; Delmonte V; Fischbach S; Wigger D; Reiter DE; Mermillod Q; Schnauber P; Kaganskiy A; Schulze JH; Strittmatter A; Rodt S; Langbein W; Kuhn T; Reitzenstein S; Kasprzak J
    ACS Photonics; 2016 Dec; 3(12):2461-2466. PubMed ID: 28713845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entanglement and Einstein-Podolsky-Rosen steering between a nanomechanical resonator and a cavity coupled with two quantum dots.
    Yan Y; Li GX; Wu QL
    Opt Express; 2015 Aug; 23(16):21306-22. PubMed ID: 26367979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical feedback-enhanced photon entanglement from a biexciton cascade.
    Hein SM; Schulze F; Carmele A; Knorr A
    Phys Rev Lett; 2014 Jul; 113(2):027401. PubMed ID: 25062228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An intuitive protocol for polarization-entanglement restoral of quantum dot photon sources with non-vanishing fine-structure splitting.
    Varo S; Juska G; Pelucchi E
    Sci Rep; 2022 Mar; 12(1):4723. PubMed ID: 35304526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneously enhanced magnomechanical cooling and entanglement assisted by an auxiliary microwave cavity.
    Liu ZQ; Liu L; Meng ZZ; Tan L; Liu WM
    Opt Express; 2024 Jan; 32(1):722-741. PubMed ID: 38175094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton-phonon system on a star graph: A perturbative approach.
    Yalouz S; Pouthier V
    Phys Rev E; 2016 May; 93(5):052306. PubMed ID: 27300909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.