These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31697576)

  • 1. From Engineered Tissues and Microfludics to Human Eyes-On-A-Chip.
    Radisic M
    J Ocul Pharmacol Ther; 2020; 36(1):4-6. PubMed ID: 31697576
    [No Abstract]   [Full Text] [Related]  

  • 2. Multiple functions of microfluidic platforms: Characterization and applications in tissue engineering and diagnosis of cancer.
    Davaran S; Sadeghinia M; Jamalpoor Z; Raeisdasteh Hokmabad V; Doosti-Telgerd M; Karimian A; Sadeghinia Z; Khalilifard J; Keramt A; Moradikhah F; Sadeghinia A
    Electrophoresis; 2020 Jun; 41(12):1081-1094. PubMed ID: 32103511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organs on Chips 2013.
    Beebe DJ; Ingber DE; den Toonder J
    Lab Chip; 2013 Sep; 13(18):3447-8. PubMed ID: 23918086
    [No Abstract]   [Full Text] [Related]  

  • 4. Microfluidic devices for disease modeling in muscle tissue.
    Smoak MM; Pearce HA; Mikos AG
    Biomaterials; 2019 Apr; 198():250-258. PubMed ID: 30193908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in ex vivo models and lab-on-a-chip devices for neural tissue engineering.
    Mobini S; Song YH; McCrary MW; Schmidt CE
    Biomaterials; 2019 Apr; 198():146-166. PubMed ID: 29880219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vitro Microfluidic Models for Neurodegenerative Disorders.
    Osaki T; Shin Y; Sivathanu V; Campisi M; Kamm RD
    Adv Healthc Mater; 2018 Jan; 7(2):. PubMed ID: 28881425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. User-Friendly and Parallelized Generation of Human Induced Pluripotent Stem Cell-Derived Microtissues in a Centrifugal Heart-on-a-Chip.
    Schneider O; Zeifang L; Fuchs S; Sailer C; Loskill P
    Tissue Eng Part A; 2019 May; 25(9-10):786-798. PubMed ID: 30968738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lab-on-a-chip technologies for stem cell analysis.
    Ertl P; Sticker D; Charwat V; Kasper C; Lepperdinger G
    Trends Biotechnol; 2014 May; 32(5):245-53. PubMed ID: 24726257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecotoxicology Goes on a Chip: Embracing Miniaturized Bioanalysis in Aquatic Risk Assessment.
    Campana O; Wlodkowic D
    Environ Sci Technol; 2018 Feb; 52(3):932-946. PubMed ID: 29284083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic vascular-bed devices for vascularized 3D tissue engineering: tissue engineering on a chip.
    Takehara H; Sakaguchi K; Sekine H; Okano T; Shimizu T
    Biomed Microdevices; 2019 Dec; 22(1):9. PubMed ID: 31863202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization.
    Wang J; He Y; Xia H; Niu LG; Zhang R; Chen QD; Zhang YL; Li YF; Zeng SJ; Qin JH; Lin BC; Sun HB
    Lab Chip; 2010 Aug; 10(15):1993-6. PubMed ID: 20508876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale variation-aware techniques for high-performance digital microfluidic lab-on-a-chip component placement.
    Liao C; Hu S
    IEEE Trans Nanobioscience; 2011 Mar; 10(1):51-8. PubMed ID: 21511570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Microfluidic Biodisplay.
    Volpetti F; Petrova E; Maerkl SJ
    ACS Synth Biol; 2017 Nov; 6(11):1979-1987. PubMed ID: 28771313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic device for rapid digestion of tissues into cellular suspensions.
    Qiu X; Westerhof TM; Karunaratne AA; Werner EM; Pourfard PP; Nelson EL; Hui EE; Haun JB
    Lab Chip; 2017 Sep; 17(19):3300-3309. PubMed ID: 28850139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in lab-on-a-chip for biosensing applications.
    Lafleur JP; Jönsson A; Senkbeil S; Kutter JP
    Biosens Bioelectron; 2016 Feb; 76():213-33. PubMed ID: 26318580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.
    Han SI; Han KH
    Methods Mol Biol; 2013; 949():169-84. PubMed ID: 23329443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering long shelf life multi-layer biologically active surfaces on microfluidic devices for point of care applications.
    Asghar W; Yuksekkaya M; Shafiee H; Zhang M; Ozen MO; Inci F; Kocakulak M; Demirci U
    Sci Rep; 2016 Feb; 6():21163. PubMed ID: 26883474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comment on "Robust scalable high throughput production of monodisperse drops" by E. Amstad, M. Chemama, M. Eggersdorfer, L. R. Arriaga, M. P. Brenner and D. A. Weitz, Lab Chip, 2016, 16, 4163.
    Nakajima M
    Lab Chip; 2017 Jun; 17(13):2330-2331. PubMed ID: 28603798
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.