BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 31697823)

  • 41. Mutational patterns and clonal evolution from diagnosis to relapse in pediatric acute lymphoblastic leukemia.
    Sayyab S; Lundmark A; Larsson M; Ringnér M; Nystedt S; Marincevic-Zuniga Y; Tamm KP; Abrahamsson J; Fogelstrand L; Heyman M; Norén-Nyström U; Lönnerholm G; Harila-Saari A; Berglund EC; Nordlund J; Syvänen AC
    Sci Rep; 2021 Aug; 11(1):15988. PubMed ID: 34362951
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanisms of relapse in acute leukaemia: involvement of p53 mutated subclones in disease progression in acute lymphoblastic leukaemia.
    Zhu YM; Foroni L; McQuaker IG; Papaioannou M; Haynes A; Russell HH
    Br J Cancer; 1999 Mar; 79(7-8):1151-7. PubMed ID: 10098750
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Loss of heterozygosity and somatic mutations of the glucocorticoid receptor gene are rarely found at relapse in pediatric acute lymphoblastic leukemia but may occur in a subpopulation early in the disease course.
    Irving JA; Minto L; Bailey S; Hall AG
    Cancer Res; 2005 Nov; 65(21):9712-8. PubMed ID: 16266991
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CREBBP mutations in relapsed acute lymphoblastic leukaemia.
    Mullighan CG; Zhang J; Kasper LH; Lerach S; Payne-Turner D; Phillips LA; Heatley SL; Holmfeldt L; Collins-Underwood JR; Ma J; Buetow KH; Pui CH; Baker SD; Brindle PK; Downing JR
    Nature; 2011 Mar; 471(7337):235-9. PubMed ID: 21390130
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Therapy-Acquired Clonal Mutations in Thiopurine Drug-Response Genes Drive Majority of Early Relapses in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia.
    Thakur R; Bhatia P; Singh M; Sreedharanunni S; Sharma P; Singh A; Trehan A
    Diagnostics (Basel); 2023 Feb; 13(5):. PubMed ID: 36900028
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Variegated clonality and rapid emergence of new molecular lesions in xenografts of acute lymphoblastic leukemia are associated with drug resistance.
    Nowak D; Liem NL; Mossner M; Klaumünzer M; Papa RA; Nowak V; Jann JC; Akagi T; Kawamata N; Okamoto R; Thoennissen NH; Kato M; Sanada M; Hofmann WK; Ogawa S; Marshall GM; Lock RB; Koeffler HP
    Exp Hematol; 2015 Jan; 43(1):32-43.e1-35. PubMed ID: 25450514
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single-Molecule Sequencing Reveals Patterns of Preexisting Drug Resistance That Suggest Treatment Strategies in Philadelphia-Positive Leukemias.
    Schmitt MW; Pritchard JR; Leighow SM; Aminov BI; Beppu L; Kim DS; Hodgson JG; Rivera VM; Loeb LA; Radich JP
    Clin Cancer Res; 2018 Nov; 24(21):5321-5334. PubMed ID: 30042204
    [No Abstract]   [Full Text] [Related]  

  • 48. Panel-based next-generation sequencing identifies prognostic and actionable genes in childhood acute lymphoblastic leukemia and is suitable for clinical sequencing.
    Ishida H; Iguchi A; Aoe M; Takahashi T; Tamefusa K; Kanamitsu K; Fujiwara K; Washio K; Matsubara T; Tsukahara H; Sanada M; Shimada A
    Ann Hematol; 2019 Mar; 98(3):657-668. PubMed ID: 30446805
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Amplification of the dihydrofolate reductase gene is a mechanism of acquired resistance to methotrexate in patients with acute lymphoblastic leukemia and is correlated with p53 gene mutations.
    Göker E; Waltham M; Kheradpour A; Trippett T; Mazumdar M; Elisseyeff Y; Schnieders B; Steinherz P; Tan C; Berman E
    Blood; 1995 Jul; 86(2):677-84. PubMed ID: 7605998
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In vivo response to methotrexate forecasts outcome of acute lymphoblastic leukemia and has a distinct gene expression profile.
    Sorich MJ; Pottier N; Pei D; Yang W; Kager L; Stocco G; Cheng C; Panetta JC; Pui CH; Relling MV; Cheok MH; Evans WE
    PLoS Med; 2008 Apr; 5(4):e83. PubMed ID: 18416598
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mutational dynamics of early and late relapsed childhood ALL: rapid clonal expansion and long-term dormancy.
    Spinella JF; Richer C; Cassart P; Ouimet M; Healy J; Sinnett D
    Blood Adv; 2018 Feb; 2(3):177-188. PubMed ID: 29365312
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reduced folate carrier mutations are not the mechanism underlying methotrexate resistance in childhood acute lymphoblastic leukemia.
    Kaufman Y; Drori S; Cole PD; Kamen BA; Sirota J; Ifergan I; Arush MW; Elhasid R; Sahar D; Kaspers GJ; Jansen G; Matherly LH; Rechavi G; Toren A; Assaraf YG
    Cancer; 2004 Feb; 100(4):773-82. PubMed ID: 14770434
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of NT5C2 Germline Variants on 6-Mecaptopurine Metabolism in Children With Acute Lymphoblastic Leukemia.
    Jiang C; Yang W; Moriyama T; Liu C; Smith C; Yang W; Qian M; Li Z; Tulstrup M; Schmiegelow K; Crews KR; Zhang H; Pui CH; Evans W; Relling M; Bhatia S; Yang JJ
    Clin Pharmacol Ther; 2021 Jun; 109(6):1538-1545. PubMed ID: 33124053
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mutations in the gene for human dihydrofolate reductase: an unlikely cause of clinical relapse in pediatric leukemia after therapy with methotrexate.
    Spencer HT; Sorrentino BP; Pui CH; Chunduru SK; Sleep SE; Blakley RL
    Leukemia; 1996 Mar; 10(3):439-46. PubMed ID: 8642859
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic alterations in glucocorticoid signaling pathway components are associated with adverse prognosis in children with relapsed ETV6/RUNX1-positive acute lymphoblastic leukemia.
    Grausenburger R; Bastelberger S; Eckert C; Kauer M; Stanulla M; Frech C; Bauer E; Stoiber D; von Stackelberg A; Attarbaschi A; Haas OA; Panzer-Grümayer R
    Leuk Lymphoma; 2016 May; 57(5):1163-73. PubMed ID: 26327566
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The genomic landscape of teenage and young adult T-cell acute lymphoblastic leukemia.
    Mansur MB; Furness CL; Nakjang S; Enshaei A; Alpar D; Colman SM; Minto L; Irving J; Poole BV; Noronha EP; Savola S; Iqbal S; Gribben J; Pombo-de-Oliveira MS; Ford TM; Greaves MF; van Delft FW
    Cancer Med; 2021 Jul; 10(14):4864-4873. PubMed ID: 34080325
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel gene targets detected by genomic profiling in a consecutive series of 126 adults with acute lymphoblastic leukemia.
    Safavi S; Hansson M; Karlsson K; Biloglav A; Johansson B; Paulsson K
    Haematologica; 2015 Jan; 100(1):55-61. PubMed ID: 25261097
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Treatment of childhood acute lymphoblastic leukemia after the first relapse: curative strategies.
    Uderzo C; Dini G; Locatelli F; Miniero R; Tamaro P
    Haematologica; 2000 Nov; 85(11 Suppl):47-53. PubMed ID: 11268324
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Drug resistance and BCR-ABL kinase domain mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia from the imatinib to the second-generation tyrosine kinase inhibitor era: The main changes are in the type of mutations, but not in the frequency of mutation involvement.
    Soverini S; De Benedittis C; Papayannidis C; Paolini S; Venturi C; Iacobucci I; Luppi M; Bresciani P; Salvucci M; Russo D; Sica S; Orlandi E; Intermesoli T; Gozzini A; Bonifacio M; Rigolin GM; Pane F; Baccarani M; Cavo M; Martinelli G
    Cancer; 2014 Apr; 120(7):1002-9. PubMed ID: 24382642
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mutations of the p53 and ras genes in childhood t(1;19)-acute lymphoblastic leukemia.
    Kawamura M; Kikuchi A; Kobayashi S; Hanada R; Yamamoto K; Horibe K; Shikano T; Ueda K; Hayashi K; Sekiya T
    Blood; 1995 May; 85(9):2546-52. PubMed ID: 7727782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.