These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 31697891)

  • 1. Machine-Learning-Based Predictive Modeling of Glass Transition Temperatures: A Case of Polyhydroxyalkanoate Homopolymers and Copolymers.
    Pilania G; Iverson CN; Lookman T; Marrone BL
    J Chem Inf Model; 2019 Dec; 59(12):5013-5025. PubMed ID: 31697891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning for Melting Temperature Predictions and Design in Polyhydroxyalkanoate-Based Biopolymers.
    Bejagam KK; Lalonde J; Iverson CN; Marrone BL; Pilania G
    J Phys Chem B; 2022 Feb; 126(4):934-945. PubMed ID: 35072485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations for glass transition temperature predictions of polyhydroxyalkanoate biopolymers.
    Bejagam KK; Iverson CN; Marrone BL; Pilania G
    Phys Chem Chem Phys; 2020 Aug; 22(32):17880-17889. PubMed ID: 32776023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Deep Neural Network for Accurate and Robust Prediction of the Glass Transition Temperature of Polyhydroxyalkanoate Homo- and Copolymers.
    Jiang Z; Hu J; Marrone BL; Pilania G; Yu XB
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33327598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning glass transition temperature of styrenic random copolymers.
    Zhang Y; Xu X
    J Mol Graph Model; 2021 Mar; 103():107796. PubMed ID: 33248342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking Machine Learning Models for Polymer Informatics: An Example of Glass Transition Temperature.
    Tao L; Varshney V; Li Y
    J Chem Inf Model; 2021 Nov; 61(11):5395-5413. PubMed ID: 34662106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Glass Transition Temperature Fluorinated Polymers Based on Transfer Learning with Small Experimental Data.
    Yang JH; Lee J; Kwon H; Sohn EH; Chang H; Jang S
    Macromol Rapid Commun; 2024 May; ():e2400161. PubMed ID: 38794832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-property interpretation of biological polyhydroxyalkanoates with different monomeric composition: Dielectric spectroscopy investigation.
    Ishak KA; Velayutham TS; Annuar MSM; Sirajudeen AAO
    Int J Biol Macromol; 2021 Feb; 169():311-320. PubMed ID: 33340632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Scale Glass-Transition Temperature Prediction with an Equivariant Neural Network for Screening Polymers.
    Long Z; Lu H; Zhang Z
    ACS Omega; 2024 Feb; 9(5):5452-5462. PubMed ID: 38343992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ring Repeating Unit: An Upgraded Structure Representation of Linear Condensation Polymers for Property Prediction.
    Yu M; Shi Y; Jia Q; Wang Q; Luo ZH; Yan F; Zhou YN
    J Chem Inf Model; 2023 Feb; 63(4):1177-1187. PubMed ID: 36651860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Polymers' Glass Transition Temperature by a Chemical Language Processing Model.
    Chen G; Tao L; Li Y
    Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34200505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of process parameters on the characteristics of polyhydroxyalkanoates produced by mixed cultures.
    Serafim LS; Lemos PC; Torres C; Reis MA; Ramos AM
    Macromol Biosci; 2008 Apr; 8(4):355-66. PubMed ID: 18157852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the Mechanical Response of Polyhydroxyalkanoate Biopolymers Using Molecular Dynamics Simulations.
    Bejagam KK; Gupta NS; Lee KS; Iverson CN; Marrone BL; Pilania G
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Progress in Polyhydroxyalkanoates-Based Copolymers for Biomedical Applications.
    Luo Z; Wu YL; Li Z; Loh XJ
    Biotechnol J; 2019 Dec; 14(12):e1900283. PubMed ID: 31469496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered Escherichia coli for short-chain-length medium-chain-length polyhydroxyalkanoate copolymer biosynthesis from glycerol and dodecanoate.
    Phithakrotchanakoon C; Champreda V; Aiba S; Pootanakit K; Tanapongpipat S
    Biosci Biotechnol Biochem; 2013; 77(6):1262-8. PubMed ID: 23748789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning with Enormous "Synthetic" Data Sets: Predicting Glass Transition Temperature of Polyimides Using Graph Convolutional Neural Networks.
    Volgin IV; Batyr PA; Matseevich AV; Dobrovskiy AY; Andreeva MV; Nazarychev VM; Larin SV; Goikhman MY; Vizilter YV; Askadskii AA; Lyulin SV
    ACS Omega; 2022 Dec; 7(48):43678-43691. PubMed ID: 36506114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating Polymer Representations via Quantifying Structure-Property Relationships.
    Ma R; Liu Z; Zhang Q; Liu Z; Luo T
    J Chem Inf Model; 2019 Jul; 59(7):3110-3119. PubMed ID: 31268306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning glass transition temperature of polymers.
    Zhang Y; Xu X
    Heliyon; 2020 Oct; 6(10):e05055. PubMed ID: 33083589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Drug Molecules to Thermoset Shape Memory Polymers: A Machine Learning Approach.
    Yan C; Feng X; Li G
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60508-60521. PubMed ID: 34878247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction and Interpretability of Glass Transition Temperature of Homopolymers by Data-Augmented Graph Convolutional Neural Networks.
    Hu J; Li Z; Lin J; Zhang L
    ACS Appl Mater Interfaces; 2023 Nov; 15(46):54006-54017. PubMed ID: 37934171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.