These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 31698001)

  • 1. Efficient de-noising of high-resolution fMRI using local and sub-band information.
    Malekian V; Nasiraei-Moghaddam A; Akhavan A; Hossein-Zadeh GA
    J Neurosci Methods; 2020 Feb; 331():108497. PubMed ID: 31698001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavelet-based fMRI analysis: 3-D denoising, signal separation, and validation metrics.
    Khullar S; Michael A; Correa N; Adali T; Baum SA; Calhoun VD
    Neuroimage; 2011 Feb; 54(4):2867-84. PubMed ID: 21034833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing.
    Wink AM; Roerdink JB
    IEEE Trans Med Imaging; 2004 Mar; 23(3):374-87. PubMed ID: 15027530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive smoothing based on Gaussian processes regression increases the sensitivity and specificity of fMRI data.
    Strappini F; Gilboa E; Pitzalis S; Kay K; McAvoy M; Nehorai A; Snyder AZ
    Hum Brain Mapp; 2017 Mar; 38(3):1438-1459. PubMed ID: 27943516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive independent vector analysis for multi-subject complex-valued fMRI data.
    Kuang LD; Lin QH; Gong XF; Cong F; Calhoun VD
    J Neurosci Methods; 2017 Apr; 281():49-63. PubMed ID: 28214528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavelet domain de-noising of time-courses in MR image sequences.
    Alexander ME; Baumgartner R; Windischberger C; Moser E; Somorjai RL
    Magn Reson Imaging; 2000 Nov; 18(9):1129-1134. PubMed ID: 11222905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracortical smoothing of small-voxel fMRI data can provide increased detection power without spatial resolution losses compared to conventional large-voxel fMRI data.
    Blazejewska AI; Fischl B; Wald LL; Polimeni JR
    Neuroimage; 2019 Apr; 189():601-614. PubMed ID: 30690157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional overestimation due to spatial smoothing of fMRI data.
    Liu P; Calhoun V; Chen Z
    J Neurosci Methods; 2017 Nov; 291():1-12. PubMed ID: 28789993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. False positive control of activated voxels in single fMRI analysis using bootstrap resampling in comparison to spatial smoothing.
    Darki F; Oghabian MA
    Magn Reson Imaging; 2013 Oct; 31(8):1331-7. PubMed ID: 23664823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wavelet-based de-noising algorithm for images acquired with parallel magnetic resonance imaging (MRI).
    Delakis I; Hammad O; Kitney RI
    Phys Med Biol; 2007 Jul; 52(13):3741-51. PubMed ID: 17664574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A modified OSEM algorithm for PET reconstruction using wavelet processing.
    Lee NY; Choi Y
    Comput Methods Programs Biomed; 2005 Dec; 80(3):236-45. PubMed ID: 16274838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of spatial resolution on decoding accuracy in fMRI multivariate pattern analysis.
    Gardumi A; Ivanov D; Hausfeld L; Valente G; Formisano E; Uludağ K
    Neuroimage; 2016 May; 132():32-42. PubMed ID: 26899782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust estimation of ultrasound pulses using outlier-resistant de-noising.
    Michailovich O; Adam D
    IEEE Trans Med Imaging; 2003 Mar; 22(3):368-81. PubMed ID: 12760554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint spatial denoising and active region of interest delineation in functional magnetic resonance imaging.
    Ng B; Abugharbieh R; Palmer SJ; McKeown MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3404-7. PubMed ID: 18002728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution fMRI: overcoming the signal-to-noise problem.
    Tabelow K; Piëch V; Polzehl J; Voss HU
    J Neurosci Methods; 2009 Apr; 178(2):357-65. PubMed ID: 19135087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A family of locally constrained CCA models for detecting activation patterns in fMRI.
    Zhuang X; Yang Z; Curran T; Byrd R; Nandy R; Cordes D
    Neuroimage; 2017 Apr; 149():63-84. PubMed ID: 28041980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From spatial regularization to anatomical priors in fMRI analysis.
    Ou W; Golland P
    Inf Process Med Imaging; 2005; 19():88-100. PubMed ID: 17354687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance comparison of wavelet based denoising methods on discontinuous adventitious lung sounds.
    Ulukaya S; Serbes G; Kahya YP
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2928-2931. PubMed ID: 29060511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wavelet-based method for improving signal-to-noise ratio and contrast in MR images.
    Alexander ME; Baumgartner R; Summers AR; Windischberger C; Klarhoefer M; Moser E; Somorjai RL
    Magn Reson Imaging; 2000 Feb; 18(2):169-80. PubMed ID: 10722977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WASICA: An effective wavelet-shrinkage based ICA model for brain fMRI data analysis.
    Wang N; Zeng W; Shi Y; Ren T; Jing Y; Yin J; Yang J
    J Neurosci Methods; 2015 May; 246():75-96. PubMed ID: 25791013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.