These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 31698219)
1. Comparative photosynthetic responses of Norway spruce and Scots pine seedlings to prolonged water deficiency. Zlobin IE; Kartashov AV; Pashkovskiy PP; Ivanov YV; Kreslavski VD; Kuznetsov VV J Photochem Photobiol B; 2019 Dec; 201():111659. PubMed ID: 31698219 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis of abscisic acid levels and expression of abscisic acid-related genes in Scots pine and Norway spruce seedlings under water deficit. Pashkovskiy PP; Vankova R; Zlobin IE; Dobrev P; Ivanov YV; Kartashov AV; Kuznetsov VV Plant Physiol Biochem; 2019 Jul; 140():105-112. PubMed ID: 31091491 [TBL] [Abstract][Full Text] [Related]
3. Impact of weak water deficit on growth, photosynthetic primary processes and storage processes in pine and spruce seedlings. Zlobin IE; Ivanov YV; Kartashov AV; Sarvin BA; Stavrianidi AN; Kreslavski VD; Kuznetsov VV Photosynth Res; 2019 Mar; 139(1-3):307-323. PubMed ID: 29779192 [TBL] [Abstract][Full Text] [Related]
4. Water availability influences morphology, mycorrhizal associations, PSII efficiency and polyamine metabolism at early growth phase of Scots pine seedlings. Muilu-Mäkelä R; Vuosku J; Läärä E; Saarinen M; Heiskanen J; Häggman H; Sarjala T Plant Physiol Biochem; 2015 Mar; 88():70-81. PubMed ID: 25666263 [TBL] [Abstract][Full Text] [Related]
5. Excitation energy partitioning and quenching during cold acclimation in Scots pine. Sveshnikov D; Ensminger I; Ivanov AG; Campbell D; Lloyd J; Funk C; Hüner NP; Oquist G Tree Physiol; 2006 Mar; 26(3):325-36. PubMed ID: 16356904 [TBL] [Abstract][Full Text] [Related]
6. Photosynthetic acclimation to drought stress in Agave salmiana Otto ex Salm-Dyck seedlings is largely dependent on thermal dissipation and enhanced electron flux to photosystem I. Campos H; Trejo C; Peña-Valdivia CB; García-Nava R; Conde-Martínez FV; Cruz-Ortega Mdel R Photosynth Res; 2014 Oct; 122(1):23-39. PubMed ID: 24798124 [TBL] [Abstract][Full Text] [Related]
7. Effects of drought stress memory on the accumulation of stress-protective compounds in naturally grown pine and spruce. Kartashov AV; Zlobin IE; Pashkovskiy PP; Pojidaeva ES; Ivanov YV; Ivanova AI; Ivanov VP; Marchenko SI; Nartov DI; Kuznetsov VV Plant Physiol Biochem; 2023 Jul; 200():107761. PubMed ID: 37209454 [TBL] [Abstract][Full Text] [Related]
8. Light-induced gradual activation of photosystem II in dark-grown Norway spruce seedlings. Pavlovič A; Stolárik T; Nosek L; Kouřil R; Ilík P Biochim Biophys Acta; 2016 Jun; 1857(6):799-809. PubMed ID: 26901522 [TBL] [Abstract][Full Text] [Related]
9. Profiles of endogenous phytohormones and expression of some hormone-related genes in Scots pine and Norway spruce seedlings under water deficit. Zlobin IE; Vankova R; Pashkovskiy PP; Dobrev P; Kartashov AV; Ivanov YV; Kuznetsov VV Plant Physiol Biochem; 2020 Jun; 151():457-468. PubMed ID: 32289639 [TBL] [Abstract][Full Text] [Related]
10. Direct energy transfer from photosystem II to photosystem I confers winter sustainability in Scots Pine. Bag P; Chukhutsina V; Zhang Z; Paul S; Ivanov AG; Shutova T; Croce R; Holzwarth AR; Jansson S Nat Commun; 2020 Dec; 11(1):6388. PubMed ID: 33319777 [TBL] [Abstract][Full Text] [Related]
11. Photosynthetic electron transport adjustments in overwintering Scots pine (Pinus sylvestris L.). Ivanov AG; Sane PV; Zeinalov Y; Malmberg G; Gardeström P; Huner NP; Oquist G Planta; 2001 Aug; 213(4):575-85. PubMed ID: 11556790 [TBL] [Abstract][Full Text] [Related]
12. Quantitative analysis of differential dehydrin regulation in pine and spruce seedlings under water deficit. Kartashov AV; Zlobin IE; Pashkovskiy PP; Pojidaeva ES; Ivanov YV; Mamaeva AS; Fesenko IA; Kuznetsov VV Plant Physiol Biochem; 2021 May; 162():237-246. PubMed ID: 33706184 [TBL] [Abstract][Full Text] [Related]
13. Impacts of changing climate on the productivity of Norway spruce dominant stands with a mixture of Scots pine and birch in relation to water availability in southern and northern Finland. Ge ZM; Kellomäki S; Peltola H; Zhou X; Wang KY; Väisänen H Tree Physiol; 2011 Mar; 31(3):323-38. PubMed ID: 21436231 [TBL] [Abstract][Full Text] [Related]
14. Drought stress alters the concentration of wood terpenoids in Scots pine and Norway spruce seedlings. Turtola S; Manninen AM; Rikala R; Kainulainen P J Chem Ecol; 2003 Sep; 29(9):1981-95. PubMed ID: 14584671 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the photosynthetic apparatus in cortical bark chlorenchyma of Scots pine. Ivanov AG; Krol M; Sveshnikov D; Malmberg G; Gardeström P; Hurry V; Oquist G; Huner NP Planta; 2006 May; 223(6):1165-77. PubMed ID: 16333639 [TBL] [Abstract][Full Text] [Related]
16. Accounting for photosystem I photoinhibition sheds new light on seasonal acclimation strategies of boreal conifers. Grebe S; Porcar-Castell A; Riikonen A; Paakkarinen V; Aro EM J Exp Bot; 2024 Jul; 75(13):3973-3992. PubMed ID: 38572950 [TBL] [Abstract][Full Text] [Related]
17. Seasonal acclimation of photosystem II in Pinus sylvestris. II. Using the rate constants of sustained thermal energy dissipation and photochemistry to study the effect of the light environment. Porcar-Castell A; Juurola E; Ensminger I; Berninger F; Hari P; Nikinmaa E Tree Physiol; 2008 Oct; 28(10):1483-91. PubMed ID: 18708330 [TBL] [Abstract][Full Text] [Related]
19. Differences in photoprotective strategy during winter in Eastern white pine and white spruce. Verhoeven A; Kornkven J Tree Physiol; 2024 Feb; 44(1):. PubMed ID: 37861656 [TBL] [Abstract][Full Text] [Related]
20. Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry. Hanf S; Fischer S; Hartmann H; Keiner R; Trumbore S; Popp J; Frosch T Analyst; 2015 Jul; 140(13):4473-81. PubMed ID: 26016682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]