These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 3169828)

  • 1. Boundary conditions in simulations of cardiac propagating action potentials.
    Maglaveras N; Sahakian AV; Myers GA
    IEEE Trans Biomed Eng; 1988 Sep; 35(9):755-8. PubMed ID: 3169828
    [No Abstract]   [Full Text] [Related]  

  • 2. [Simulation of inverse recovery of epicardial potentials under incomplete boundary conditions].
    Huang S; He W; Yao D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):527-30. PubMed ID: 15357424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basic mechanisms of cardiac impulse propagation and associated arrhythmias.
    Kléber AG; Rudy Y
    Physiol Rev; 2004 Apr; 84(2):431-88. PubMed ID: 15044680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effective control of excitable waves in 2D cardiac excitable media].
    Li L; Liu L; Zhang G; Wang G; Qu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1104-7. PubMed ID: 16422076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart.
    Potse M; Dubé B; Richer J; Vinet A; Gulrajani RM
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2425-35. PubMed ID: 17153199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Action potential collision in heart tissue--computer simulations and tissue experiments.
    Steinhaus BM; Spitzer KW; Isomura S
    IEEE Trans Biomed Eng; 1985 Oct; 32(10):731-42. PubMed ID: 4054919
    [No Abstract]   [Full Text] [Related]  

  • 8. Computer simulation of re-entry sources in myocardium in two and three dimensions.
    Panfilov AV; Holden AV
    J Theor Biol; 1993 Apr; 161(3):271-85. PubMed ID: 8331954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling wave propagation in realistic heart geometries using the phase-field method.
    Fenton FH; Cherry EM; Karma A; Rappel WJ
    Chaos; 2005 Mar; 15(1):13502. PubMed ID: 15836267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch and implications for stretch-activated ion channels.
    Zabel M; Koller BS; Sachs F; Franz MR
    Cardiovasc Res; 1996 Jul; 32(1):120-30. PubMed ID: 8776409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of intramural scroll waves in three-dimensional continuous myocardium with rotational anisotropy.
    Berenfeld O; Pertsov AM
    J Theor Biol; 1999 Aug; 199(4):383-94. PubMed ID: 10441456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the hyperpolarization-activated inward current If in arrhythmogenesis: a computer model study.
    Kuijpers NH; Keldermann RH; ten Eikelder HM; Arts T; Hilbers PA
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1499-511. PubMed ID: 16916084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A time-dependent adaptive remeshing for electrical waves of the heart.
    Belhamadia Y
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):443-52. PubMed ID: 18269979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Models of the electrical activity of the heart and computer simulation of the electrocardiogram.
    Gulrajani RM
    Crit Rev Biomed Eng; 1988; 16(1):1-66. PubMed ID: 3293913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrotonic cell-cell interactions in cardiac tissue: effects on action potential propagation and repolarization.
    Rudy Y
    Ann N Y Acad Sci; 2005 Jun; 1047():308-13. PubMed ID: 16093506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of QRST integral maps with a membrane-based computer heart model employing parallel processing.
    Trudel MC; Dubé B; Potse M; Gulrajani RM; Leon LJ
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1319-29. PubMed ID: 15311816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [On the relations between the excitation fronts propagating in the heart and the equivalent dipoles].
    Okamoto Y; Aoki M; Musha T; Harumi K
    Iyodenshi To Seitai Kogaku; 1986 Dec; 24(7):470-5. PubMed ID: 3820791
    [No Abstract]   [Full Text] [Related]  

  • 18. Reactive oxygen species and autonomic regulation of cardiac excitability.
    Danson EJ; Paterson DJ
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S104-S112. PubMed ID: 16686664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examination of depth-weighted optical signals during cardiac optical mapping: a simulation study.
    Xu Z; Zhang Z; Jin Y; Wang J
    Comput Biol Med; 2007 May; 37(5):732-8. PubMed ID: 16987506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The canine virtual ventricular wall: a platform for dissecting pharmacological effects on propagation and arrhythmogenesis.
    Benson AP; Aslanidi OV; Zhang H; Holden AV
    Prog Biophys Mol Biol; 2008; 96(1-3):187-208. PubMed ID: 17915298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.