These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31698280)

  • 21. D-aspartate and NMDA, but not L-aspartate, block AMPA receptors in rat hippocampal neurons.
    Gong XQ; Frandsen A; Lu WY; Wan Y; Zabek RL; Pickering DS; Bai D
    Br J Pharmacol; 2005 Jun; 145(4):449-59. PubMed ID: 15806114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new pyrrolyl-quinoxalinedione series of non-NMDA glutamate receptor antagonists: pharmacological characterization and comparison with NBQX and valproate in the kindling model of epilepsy.
    Löscher W; Lehmann H; Behl B; Seemann D; Teschendorf HJ; Hofmann HP; Lubisch W; Höger T; Lemaire HG; Gross G
    Eur J Neurosci; 1999 Jan; 11(1):250-62. PubMed ID: 9987029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ca(2+) entry through L-type Ca(2+) channels helps terminate epileptiform activity by activation of a Ca(2+) dependent afterhyperpolarisation in hippocampal CA3.
    Empson RM; Jefferys JG
    Neuroscience; 2001; 102(2):297-306. PubMed ID: 11166116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rectification properties and Ca2+ permeability of glutamate receptor channels in hippocampal cells.
    Lerma J; Morales M; Ibarz JM; Somohano F
    Eur J Neurosci; 1994 Jul; 6(7):1080-8. PubMed ID: 7524964
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional characteristics of non-NMDA-type ionotropic glutamate receptor channels in AII amacrine cells in rat retina.
    Mørkve SH; Veruki ML; Hartveit E
    J Physiol; 2002 Jul; 542(Pt 1):147-65. PubMed ID: 12096058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ca2+-permeable non-NMDA glutamate receptors in rat magnocellular basal forebrain neurones.
    Waters DJ; Allen TG
    J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):453-69. PubMed ID: 9508809
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spontaneous synchronized calcium oscillations in neocortical neurons in the presence of physiological [Mg(2+)]: involvement of AMPA/kainate and metabotropic glutamate receptors.
    Dravid SM; Murray TF
    Brain Res; 2004 Apr; 1006(1):8-17. PubMed ID: 15047019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast interaction between AMPA and NMDA receptors by intracellular calcium.
    Rozov A; Burnashev N
    Cell Calcium; 2016 Dec; 60(6):407-414. PubMed ID: 27707506
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-ionotropic cross-talk between AMPA and NMDA receptors in rodent hippocampal neurones.
    Bai D; Muller RU; Roder JC
    J Physiol; 2002 Aug; 543(Pt 1):23-33. PubMed ID: 12181279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of ion channel blockade on the distribution of Na, K, Ca and other elements in oxygen-glucose deprived CA1 hippocampal neurons.
    LoPachin RM; Gaughan CL; Lehning EJ; Weber ML; Taylor CP
    Neuroscience; 2001; 103(4):971-83. PubMed ID: 11301205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of beta-estradiol on voltage-gated Ca(2+) channels in rat hippocampal neurons: a comparison with dehydroepiandrosterone.
    Kurata K; Takebayashi M; Kagaya A; Morinobu S; Yamawaki S
    Eur J Pharmacol; 2001 Mar; 416(3):203-12. PubMed ID: 11290370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. AMPA/kainate receptor activation in murine oligodendrocyte precursor cells leads to activation of a cation conductance, calcium influx and blockade of delayed rectifying K+ channels.
    Borges K; Ohlemeyer C; Trotter J; Kettenmann H
    Neuroscience; 1994 Nov; 63(1):135-49. PubMed ID: 7898644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overactivation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate and N-methyl-D-aspartate but not kainate receptors inhibits phosphatidylcholine synthesis before excitotoxic neuronal death.
    Gasull T; DeGregorio-Rocasolano N; Trullas R
    J Neurochem; 2001 Apr; 77(1):13-22. PubMed ID: 11279257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction between metabotropic and NMDA subtypes of glutamate receptors in sprout suppression at young synapses.
    Miskevich F; Lu W; Lin SY; Constantine-Paton M
    J Neurosci; 2002 Jan; 22(1):226-38. PubMed ID: 11756506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Corticostriatal paired-pulse potentiation produced by voltage-dependent activation of NMDA receptors and L-type Ca(2+) channels.
    Akopian G; Walsh JP
    J Neurophysiol; 2002 Jan; 87(1):157-65. PubMed ID: 11784738
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleus-specific expression of ionotropic glutamate receptor subunit mRNAs and binding sites in primate thalamus.
    Ibrahim HM; Healy DJ; Hogg AJ; Meador-Woodruff JH
    Brain Res Mol Brain Res; 2000 Jun; 79(1-2):1-17. PubMed ID: 10925139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dendritic localization of Ca(2+)-permeable AMPA/kainate channels in hippocampal pyramidal neurons.
    Yin HZ; Sensi SL; Carriedo SG; Weiss JH
    J Comp Neurol; 1999 Jun; 409(2):250-60. PubMed ID: 10379918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. L-Type Ca(2+) channels are essential for glutamate-mediated CREB phosphorylation and c-fos gene expression in striatal neurons.
    Rajadhyaksha A; Barczak A; Macías W; Leveque JC; Lewis SE; Konradi C
    J Neurosci; 1999 Aug; 19(15):6348-59. PubMed ID: 10414964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuronal input triggers Ca
    Barron T; Kim JH
    Glia; 2019 Oct; 67(10):1922-1932. PubMed ID: 31313856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NMDA receptors and L-type voltage-gated Ca²⁺ channels mediate the expression of bidirectional homeostatic intrinsic plasticity in cultured hippocampal neurons.
    Lee KY; Chung HJ
    Neuroscience; 2014 Sep; 277():610-23. PubMed ID: 25086314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.