These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 31698341)

  • 1. In situ monitoring of artificial aging and solution heat treatment of a commercial Al-Mg-Si alloy with a high intensity positron beam.
    Resch L; Gigl T; Klinser G; Hugenschmidt C; Sprengel W; Würschum R
    J Phys Condens Matter; 2020 Feb; 32(8):085705. PubMed ID: 31698341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new perspective on the precipitation sequence in a high-purity Al-1.74 at.% Cu alloy by employing positron annihilation spectroscopy: experiment and theory.
    Elsayed M; Ibrahim AM; Staab TEM; Krause-Rehberg R
    J Phys Condens Matter; 2021 Aug; 33(43):. PubMed ID: 34311455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of Interaction Mechanism between Positrons and Ag Clusters in Dilute Al-Ag Alloys at Low Temperature.
    Liu X; Zhang P; Wang B; Cao X; Jin S; Yu R
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33809744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ heating TEM observations of evolving nanoscale Al-Mg-Si-Cu precipitates.
    Sunde JK; Wenner S; Holmestad R
    J Microsc; 2020 Sep; 279(3):143-147. PubMed ID: 31721196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging Response and Precipitation Behavior after 5% Pre-Deformation of an Al-Mg-Si-Cu Alloy.
    Jin S; Ngai T; Li L; Jia S; Zhai T; Ke D
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30104495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational study of positron annihilation parameters for cation mono-vacancies and vacancy complexes in nitride semiconductor alloys.
    Ishibashi S; Uedono A; Kino H; Miyake T; Terakura K
    J Phys Condens Matter; 2019 Nov; 31(47):475401. PubMed ID: 31429422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced age-hardening response and creep resistance of an Al-0.5Mn-0.3Si (at.%) alloy by Sn inoculation.
    Farkoosh AR; Dunand DC; Seidman DN
    Acta Mater; 2022 Nov; 240():. PubMed ID: 36246780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precipitation Hardening at Elevated Temperatures above 400 °C and Subsequent Natural Age Hardening of Commercial Al-Si-Cu Alloy.
    Li R; Takata N; Suzuki A; Kobashi M; Okada Y; Furukawa Y
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Vacancy Behavior on Precipitate Formation in a Reduced-Activation V-Cr-Mn Medium-Entropy Alloy.
    Wang T; Zhu T; Wang D; Zhang P; Song Y; Ye F; Wang Q; Jin S; Yu R; Liu F; Kuang P; Wang B; Li L; Cao X
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614492
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Zhang F; Levine LE; Allen AJ; Campbell CE; Creuziger AA; Kazantseva N; Ilavsky J
    Acta Mater; 2016 Jun; 111():385-398. PubMed ID: 29606898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of a Trace Addition of Sn on the Aging Behavior of Al-Mg-Si Alloy with a Different Mg/Si Ratio.
    Ma L; Tang J; Tu W; Ye L; Jiang H; Zhan X; Zhao J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32092875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of aging induced α precipitation on the mechanical and tribocorrosive performance of a β Ti-Nb-Ta-O orthopedic alloy.
    Acharya S; Bahl S; Dabas SS; Hassan S; Gopal V; Panicker AG; Manivasagam G; Suwas S; Chatterjee K
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109755. PubMed ID: 31349485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of nonlinear ultrasonic characteristic on second-phase precipitation in heat-treated Al 6061-T6 alloy.
    Kim J; Jhang KY; Kim C
    Ultrasonics; 2018 Jan; 82():84-90. PubMed ID: 28783487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Study of Second-Phase Precipitates and Dispersoid Particles in 2024 Aluminum Alloy after Different Aging Treatments.
    Staszczyk A; Sawicki J; Adamczyk-Cieslak B
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31842250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Source for In Situ Positron Annihilation Spectroscopy of Thermal-And Hydrogen-Induced Defects Based on the Cu-64 Isotope.
    Bordulev I; Laptev R; Kabanov D; Ushakov I; Kudiiarov V; Lider A
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging Behavior and Precipitates Analysis of Wrought Al-Si-Mg Alloy.
    Liu F; Yu F; Zhao D
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positron annihilation spectroscopic studies of solvothermally synthesized ZnO nanobipyramids and nanoparticles.
    Ghoshal T; Biswas S; Kar S; Chaudhuri S; Nambissan PM
    J Chem Phys; 2008 Feb; 128(7):074702. PubMed ID: 18298159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of microstructural changes due to prolonged thermal exposure of directionally solidified Ni-base super alloy CM 247LC using ultrasonic.
    Mukhopadhyay A; Chatterjee D; Mondal C; Punnose S; Gopinath K
    Ultrasonics; 2018 Nov; 90():42-51. PubMed ID: 29908423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Germanium network connecting precipitates in an Mg-rich Al-Mg-Ge alloy.
    Bjørge R; Marioara CD; Andersen SJ; Holmestad R
    J Electron Microsc (Tokyo); 2010 Aug; 59 Suppl 1():S129-33. PubMed ID: 20554756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analytical electron microscopic investigation of precipitation in an Al-Cu-Zn-Mg-Ag alloy.
    Hasan F; Lorimer GW
    Microsc Res Tech; 1993 Mar; 24(4):359-66. PubMed ID: 8513176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.