These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31698350)

  • 1. Feasibility of differentially measuring afferent and efferent neural activity with a single nerve cuff electrode.
    Sabetian P; Yoo PB
    J Neural Eng; 2020 Jan; 17(1):016040. PubMed ID: 31698350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity.
    Sabetian P; Popovic MR; Yoo PB
    J Neural Eng; 2017 Jun; 14(3):036015. PubMed ID: 28251960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the reduction of stimulation artifact noise in a tripolar nerve cuff electrode by application of a conductive shield layer.
    Sabetian P; Sadeghlo B; Zhang CH; Yoo PB
    Med Eng Phys; 2017 Feb; 40():39-46. PubMed ID: 27956020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directionally-sensitive peripheral nerve recording: bipolar nerve cuff design.
    Sabetian P; Popovic MR; Yoo PB
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6178-6181. PubMed ID: 28269663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of directionally specific vagus nerve activity using an upper airway obstruction model in anesthetized rodents.
    Sabetian P; Sadat-Nejad Y; Yoo PB
    Sci Rep; 2021 May; 11(1):10682. PubMed ID: 34021186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centrifugal gastric vagal afferent unit activities: another source of gastric "efferent" control.
    Wei JY; Adelson DW; Taché Y; Go VL
    J Auton Nerv Syst; 1995 Apr; 52(2-3):83-97. PubMed ID: 7615902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Durable scalable 3D SLA-printed cuff electrodes with high performance carbon + PEDOT:PSS-based contacts.
    Doering OM; Vetter C; Alhawwash A; Horn MR; Yoshida K
    Artif Organs; 2022 Oct; 46(10):2085-2096. PubMed ID: 35971860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of nerve cuff channel count and implantation site on the separability of afferent ENG.
    Silveira C; Brunton E; Spendiff S; Nazarpour K
    J Neural Eng; 2018 Aug; 15(4):046004. PubMed ID: 29629880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-channel sieve electrode for concurrent bidirectional peripheral nerve interface. Part A: recording.
    Coker RA; Zellmer ER; Moran DW
    J Neural Eng; 2019 Apr; 16(2):026001. PubMed ID: 30524005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal strength versus cuff length in nerve cuff electrode recordings.
    Andreasen LN; Struijk JJ
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1045-50. PubMed ID: 12214877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of signal-to-interference ratio and signal-to-noise ratio in nerve cuff electrode systems.
    Chu JU; Song KI; Han S; Lee SH; Kim J; Kang JY; Hwang D; Suh JK; Choi K; Youn I
    Physiol Meas; 2012 Jun; 33(6):943-67. PubMed ID: 22551721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental determination of compound action potential direction and propagation velocity from multi-electrode nerve cuffs.
    Rieger R; Taylor J; Comi E; Donaldson N; Russold M; Mahony CM; McLaughlin JA; McAdams E; Demosthenous A; Jarvis JC
    Med Eng Phys; 2004 Jul; 26(6):531-4. PubMed ID: 15234689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation.
    Minev IR; Chew DJ; Delivopoulos E; Fawcett JW; Lacour SP
    J Neural Eng; 2012 Apr; 9(2):026005. PubMed ID: 22328617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-channel sieve electrode for concurrent bidirectional peripheral nerve interface. Part B: stimulation.
    Coker RA; Zellmer ER; Moran DW
    J Neural Eng; 2019 Apr; 16(2):026002. PubMed ID: 30524078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model-based evaluation of the short-circuited tripolar cuff configuration.
    Andreasen LN; Struijk JJ
    Med Biol Eng Comput; 2006 May; 44(5):404-13. PubMed ID: 16937182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of bladder related nerve cuff electrode recordings from preganglionic pelvic nerve and sacral roots in pigs.
    Jezernik S; Wen JG; Rijkhoff NJ; Djurhuus JC; Sinkjaer T
    J Urol; 2000 Apr; 163(4):1309-14. PubMed ID: 10737535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibre-selective recording from the peripheral nerves of frogs using a multi-electrode cuff.
    Schuettler M; Donaldson N; Seetohul V; Taylor J
    J Neural Eng; 2013 Jun; 10(3):036016. PubMed ID: 23640008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-low noise miniaturized neural amplifier with hardware averaging.
    Dweiri YM; Eggers T; McCallum G; Durand DM
    J Neural Eng; 2015 Aug; 12(4):046024. PubMed ID: 26083774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the identification of sensory information from mixed nerves by using single-channel cuff electrodes.
    Raspopovic S; Carpaneto J; Udina E; Navarro X; Micera S
    J Neuroeng Rehabil; 2010 Apr; 7():17. PubMed ID: 20423488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artefact reduction with alternative cuff configurations.
    Andreasen LN; Struijk JJ
    IEEE Trans Biomed Eng; 2003 Oct; 50(10):1160-6. PubMed ID: 14560769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.