BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31698505)

  • 1. Pannexin 1 activation and inhibition is permeant-selective.
    Nielsen BS; Toft-Bertelsen TL; Lolansen SD; Anderson CL; Nielsen MS; Thompson RJ; MacAulay N
    J Physiol; 2020 Jan; 598(2):361-379. PubMed ID: 31698505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP and large signaling metabolites flux through caspase-activated Pannexin 1 channels.
    Narahari AK; Kreutzberger AJ; Gaete PS; Chiu YH; Leonhardt SA; Medina CB; Jin X; Oleniacz PW; Kiessling V; Barrett PQ; Ravichandran KS; Yeager M; Contreras JE; Tamm LK; Bayliss DA
    Elife; 2021 Jan; 10():. PubMed ID: 33410749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation, permeability, and inhibition of astrocytic and neuronal large pore (hemi)channels.
    Hansen DB; Ye ZC; Calloe K; Braunstein TH; Hofgaard JP; Ransom BR; Nielsen MS; MacAulay N
    J Biol Chem; 2014 Sep; 289(38):26058-26073. PubMed ID: 25086040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cationic control of Panx1 channel function.
    Wang J; Jackson DG; Dahl G
    Am J Physiol Cell Physiol; 2018 Sep; 315(3):C279-C289. PubMed ID: 29719168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Permeant-specific gating of connexin 30 hemichannels.
    Nielsen BS; Alstrom JS; Nicholson BJ; Nielsen MS; MacAulay N
    J Biol Chem; 2017 Dec; 292(49):19999-20009. PubMed ID: 28982982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct permeation profiles of the connexin 30 and 43 hemichannels.
    Hansen DB; Braunstein TH; Nielsen MS; MacAulay N
    FEBS Lett; 2014 Apr; 588(8):1446-57. PubMed ID: 24503060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pannexin 1 forms an anion-selective channel.
    Ma W; Compan V; Zheng W; Martin E; North RA; Verkhratsky A; Surprenant A
    Pflugers Arch; 2012 Apr; 463(4):585-92. PubMed ID: 22311122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The permeability of gap junction channels to probes of different size is dependent on connexin composition and permeant-pore affinities.
    Weber PA; Chang HC; Spaeth KE; Nitsche JM; Nicholson BJ
    Biophys J; 2004 Aug; 87(2):958-73. PubMed ID: 15298902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pannexin1: a multifunction and multiconductance and/or permeability membrane channel.
    Wang J; Dahl G
    Am J Physiol Cell Physiol; 2018 Sep; 315(3):C290-C299. PubMed ID: 29719171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantized mechanism for activation of pannexin channels.
    Chiu YH; Jin X; Medina CB; Leonhardt SA; Kiessling V; Bennett BC; Shu S; Tamm LK; Yeager M; Ravichandran KS; Bayliss DA
    Nat Commun; 2017 Jan; 8():14324. PubMed ID: 28134257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single cysteines in the extracellular and transmembrane regions modulate pannexin 1 channel function.
    Bunse S; Schmidt M; Hoffmann S; Engelhardt K; Zoidl G; Dermietzel R
    J Membr Biol; 2011 Nov; 244(1):21-33. PubMed ID: 21938521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The food dye FD&C Blue No. 1 is a selective inhibitor of the ATP release channel Panx1.
    Wang J; Jackson DG; Dahl G
    J Gen Physiol; 2013 May; 141(5):649-56. PubMed ID: 23589583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stomatin inhibits pannexin-1-mediated whole-cell currents by interacting with its carboxyl terminal.
    Zhan H; Moore CS; Chen B; Zhou X; Ma XM; Ijichi K; Bennett MV; Li XJ; Crocker SJ; Wang ZW
    PLoS One; 2012; 7(6):e39489. PubMed ID: 22768083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular cysteine 346 is essentially involved in regulating Panx1 channel activity.
    Bunse S; Schmidt M; Prochnow N; Zoidl G; Dermietzel R
    J Biol Chem; 2010 Dec; 285(49):38444-52. PubMed ID: 20829356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in the structure and activation mechanisms of metabolite-releasing Pannexin 1 channels.
    Wu YL; Yang AH; Chiu YH
    Biochem Soc Trans; 2023 Aug; 51(4):1687-1699. PubMed ID: 37622532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of pannexin-1 channel activity by adiponectin in podocytes: Role of acid ceramidase activation.
    Li G; Zhang Q; Hong J; Ritter JK; Li PL
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Oct; 1863(10):1246-1256. PubMed ID: 30077007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural determinants underlying permeant discrimination of the Cx43 hemichannel.
    Nielsen BS; Zonta F; Farkas T; Litman T; Nielsen MS; MacAulay N
    J Biol Chem; 2019 Nov; 294(45):16789-16803. PubMed ID: 31554662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological characterization of pannexin-1 currents expressed in mammalian cells.
    Ma W; Hui H; Pelegrin P; Surprenant A
    J Pharmacol Exp Ther; 2009 Feb; 328(2):409-18. PubMed ID: 19023039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure versus function: Are new conformations of pannexin 1 yet to be resolved?
    Mim C; Perkins G; Dahl G
    J Gen Physiol; 2021 May; 153(5):. PubMed ID: 33835130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.