These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31698678)

  • 1. Sensor-Assisted Weighted Average Ensemble Model for Detecting Major Depressive Disorder.
    Mahendran N; Vincent DR; Srinivasan K; Chang CY; Garg A; Gao L; Reina DG
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31698678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD).
    Mumtaz W; Ali SSA; Yasin MAM; Malik AS
    Med Biol Eng Comput; 2018 Feb; 56(2):233-246. PubMed ID: 28702811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning.
    Dinh A; Miertschin S; Young A; Mohanty SD
    BMC Med Inform Decis Mak; 2019 Nov; 19(1):211. PubMed ID: 31694707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ensemble Learning for Early-Response Prediction of Antidepressant Treatment in Major Depressive Disorder.
    Pei C; Sun Y; Zhu J; Wang X; Zhang Y; Zhang S; Yao Z; Lu Q
    J Magn Reson Imaging; 2020 Jul; 52(1):161-171. PubMed ID: 31859419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder.
    Mwangi B; Ebmeier KP; Matthews K; Steele JD
    Brain; 2012 May; 135(Pt 5):1508-21. PubMed ID: 22544901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classifying major depression patients and healthy controls using EEG, eye tracking and galvanic skin response data.
    Ding X; Yue X; Zheng R; Bi C; Li D; Yao G
    J Affect Disord; 2019 May; 251():156-161. PubMed ID: 30925266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel EEG-based major depressive disorder detection framework with two-stage feature selection.
    Li Y; Shen Y; Fan X; Huang X; Yu H; Zhao G; Ma W
    BMC Med Inform Decis Mak; 2022 Aug; 22(1):209. PubMed ID: 35933348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports.
    Kessler RC; van Loo HM; Wardenaar KJ; Bossarte RM; Brenner LA; Cai T; Ebert DD; Hwang I; Li J; de Jonge P; Nierenberg AA; Petukhova MV; Rosellini AJ; Sampson NA; Schoevers RA; Wilcox MA; Zaslavsky AM
    Mol Psychiatry; 2016 Oct; 21(10):1366-71. PubMed ID: 26728563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A wrapper-based approach for feature selection and classification of major depressive disorder-bipolar disorders.
    Tekin Erguzel T; Tas C; Cebi M
    Comput Biol Med; 2015 Sep; 64():127-37. PubMed ID: 26164033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entropy analysis of heart rate variability and its application to recognize major depressive disorder: A pilot study.
    Byun S; Kim AY; Jang EH; Kim S; Choi KW; Yu HY; Jeon HJ
    Technol Health Care; 2019; 27(S1):407-424. PubMed ID: 31045557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting depression severity using weighted random forest and oxidative stress biomarkers.
    Bader M; Abdelwanis M; Maalouf M; Jelinek HF
    Sci Rep; 2024 Jul; 14(1):16328. PubMed ID: 39009760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA classification and discovery for major depressive disorder diagnosis: Towards a robust and interpretable machine learning approach.
    Chan YL; Ho CSH; Tay GWN; Tan TWK; Tang TB
    J Affect Disord; 2024 Sep; 360():326-335. PubMed ID: 38788856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Antidepressant Treatment Response and Remission Using an Ensemble Machine Learning Framework.
    Lin E; Kuo PH; Liu YL; Yu YW; Yang AC; Tsai SJ
    Pharmaceuticals (Basel); 2020 Oct; 13(10):. PubMed ID: 33065962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolomic biosignature differentiates melancholic depressive patients from healthy controls.
    Liu Y; Yieh L; Yang T; Drinkenburg W; Peeters P; Steckler T; Narayan VA; Wittenberg G; Ye J
    BMC Genomics; 2016 Aug; 17(1):669. PubMed ID: 27549765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable feature selection based on the ensemble L
    Moon M; Nakai K
    BMC Genomics; 2016 Dec; 17(Suppl 13):1026. PubMed ID: 28155664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ensemble Feature Learning of Genomic Data Using Support Vector Machine.
    Anaissi A; Goyal M; Catchpoole DR; Braytee A; Kennedy PJ
    PLoS One; 2016; 11(6):e0157330. PubMed ID: 27304923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing stress prediction models using smartwatch physiological signals and participant self-reports.
    Dai R; Lu C; Yun L; Lenze E; Avidan M; Kannampallil T
    Comput Methods Programs Biomed; 2021 Sep; 208():106207. PubMed ID: 34161847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diagnosis of major depressive disorder by combining multimodal information from heart rate dynamics and serum proteomics using machine-learning algorithm.
    Kim EY; Lee MY; Kim SH; Ha K; Kim KP; Ahn YM
    Prog Neuropsychopharmacol Biol Psychiatry; 2017 Jun; 76():65-71. PubMed ID: 28223106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiparametric ultrasomics of significant liver fibrosis: A machine learning-based analysis.
    Li W; Huang Y; Zhuang BW; Liu GJ; Hu HT; Li X; Liang JY; Wang Z; Huang XW; Zhang CQ; Ruan SM; Xie XY; Kuang M; Lu MD; Chen LD; Wang W
    Eur Radiol; 2019 Mar; 29(3):1496-1506. PubMed ID: 30178143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Smartwatches to Detect Face Touching.
    Bai C; Chen YP; Wolach A; Anthony L; Mardini MT
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.