These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 31698802)
1. An Intriguing Involvement of Mitochondria in Cystic Fibrosis. Favia M; de Bari L; Bobba A; Atlante A J Clin Med; 2019 Nov; 8(11):. PubMed ID: 31698802 [TBL] [Abstract][Full Text] [Related]
2. GSH monoethyl ester rescues mitochondrial defects in cystic fibrosis models. Kelly-Aubert M; Trudel S; Fritsch J; Nguyen-Khoa T; Baudouin-Legros M; Moriceau S; Jeanson L; Djouadi F; Matar C; Conti M; Ollero M; Brouillard F; Edelman A Hum Mol Genet; 2011 Jul; 20(14):2745-59. PubMed ID: 21518732 [TBL] [Abstract][Full Text] [Related]
3. Mitochondrial oxidative stress in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice. Velsor LW; Kariya C; Kachadourian R; Day BJ Am J Respir Cell Mol Biol; 2006 Nov; 35(5):579-86. PubMed ID: 16763223 [TBL] [Abstract][Full Text] [Related]
4. Extracellular pH and lung infections in cystic fibrosis. Massip-Copiz MM; Santa-Coloma TA Eur J Cell Biol; 2018 Aug; 97(6):402-410. PubMed ID: 29933921 [TBL] [Abstract][Full Text] [Related]
5. Aberrant GSH reductase and NOX activities concur with defective CFTR to pro-oxidative imbalance in cystic fibrosis airways. de Bari L; Favia M; Bobba A; Lassandro R; Guerra L; Atlante A J Bioenerg Biomembr; 2018 Apr; 50(2):117-129. PubMed ID: 29524019 [TBL] [Abstract][Full Text] [Related]
6. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis lung disease. Moore PJ; Tarran R Expert Opin Ther Targets; 2018 Aug; 22(8):687-701. PubMed ID: 30028216 [TBL] [Abstract][Full Text] [Related]
7. Airway surface liquid homeostasis in cystic fibrosis: pathophysiology and therapeutic targets. Haq IJ; Gray MA; Garnett JP; Ward C; Brodlie M Thorax; 2016 Mar; 71(3):284-7. PubMed ID: 26719229 [TBL] [Abstract][Full Text] [Related]
8. Characterization of mitochondrial function in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function. Atlante A; Favia M; Bobba A; Guerra L; Casavola V; Reshkin SJ J Bioenerg Biomembr; 2016 Jun; 48(3):197-210. PubMed ID: 27146408 [TBL] [Abstract][Full Text] [Related]
14. Pharmacotherapy of the ion transport defect in cystic fibrosis: role of purinergic receptor agonists and other potential therapeutics. Kunzelmann K; Mall M Am J Respir Med; 2003; 2(4):299-309. PubMed ID: 14719996 [TBL] [Abstract][Full Text] [Related]
15. Abnormal glutathione transport in cystic fibrosis airway epithelia. Gao L; Kim KJ; Yankaskas JR; Forman HJ Am J Physiol; 1999 Jul; 277(1):L113-8. PubMed ID: 10409237 [TBL] [Abstract][Full Text] [Related]
16. Lack of correlation between CFTR expression, CFTR Cl- currents, amiloride-sensitive Na+ conductance, and cystic fibrosis phenotype. Beck S; Kühr J; Schütz VV; Seydewitz HH; Brandis M; Greger R; Kunzelmann K Pediatr Pulmonol; 1999 Apr; 27(4):251-9. PubMed ID: 10230924 [TBL] [Abstract][Full Text] [Related]
17. The effect of ambroxol on chloride transport, CFTR and ENaC in cystic fibrosis airway epithelial cells. Varelogianni G; Hussain R; Strid H; Oliynyk I; Roomans GM; Johannesson M Cell Biol Int; 2013 Nov; 37(11):1149-56. PubMed ID: 23765701 [TBL] [Abstract][Full Text] [Related]
18. Augmentation of Cystic Fibrosis Transmembrane Conductance Regulator Function in Human Bronchial Epithelial Cells via SLC6A14-Dependent Amino Acid Uptake. Implications for Treatment of Cystic Fibrosis. Ahmadi S; Wu YS; Li M; Ip W; Lloyd-Kuzik A; Di Paola M; Du K; Xia S; Lew A; Bozoky Z; Forman-Kay J; Bear CE; Gonska T Am J Respir Cell Mol Biol; 2019 Dec; 61(6):755-764. PubMed ID: 31189070 [TBL] [Abstract][Full Text] [Related]