These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31698936)

  • 1. Electromechanics of the Normal Human Heart In Situ.
    Andrews C; Cupps BP; Pasque MK; Rudy Y
    Circ Arrhythm Electrophysiol; 2019 Nov; 12(11):e007484. PubMed ID: 31698936
    [No Abstract]   [Full Text] [Related]  

  • 2. Three-dimensional simulation of epicardial potentials using a microcomputer-based heart-torso model.
    Lu W; Xia L
    Med Eng Phys; 1995 Dec; 17(8):625-32. PubMed ID: 8564158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simulation study of the effects of torso inhomogeneities on electrocardiographic potentials, using realistic heart and torso models.
    Gulrajani RM; Mailloux GE
    Circ Res; 1983 Jan; 52(1):45-56. PubMed ID: 6848209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computation and projection of spiral wave trajectories during atrial fibrillation: a computational study.
    Pashaei A; Bayer J; Meillet V; Dubois R; Vigmond E
    Card Electrophysiol Clin; 2015 Mar; 7(1):37-47. PubMed ID: 25784021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional myocardial activation imaging in a rabbit model.
    Liu C; Zhang X; Liu Z; Pogwizd SM; He B
    IEEE Trans Biomed Eng; 2006 Sep; 53(9):1813-20. PubMed ID: 16941837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-order coupled finite element/boundary element torso model.
    Pullan A
    IEEE Trans Biomed Eng; 1996 Mar; 43(3):292-8. PubMed ID: 8682541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Report of the first virtual visualization of the reconstructed electrocardiographic display symposium.
    MacLeod R; Kornreich F; van Oosterom A; Rautaharju P; Selvester R; Wagner G; Zywietz C
    J Electrocardiol; 2005 Oct; 38(4):385-99. PubMed ID: 16216618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical interpretation of body surface potential maps; aspects of adequate group representation and parameter selection.
    Kozmann G
    Pol Arch Med Wewn; 1992; 88(2-3):141-5. PubMed ID: 1492019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of potential- and activation-based formulations for the inverse problem of electrocardiology.
    Cheng LK; Bodley JM; Pullan AJ
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):11-22. PubMed ID: 12617520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoupled time-marching schemes in computational cardiac electrophysiology and ECG numerical simulation.
    Fernández MA; Zemzemi N
    Math Biosci; 2010 Jul; 226(1):58-75. PubMed ID: 20416327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A VR simulator for intracardiac intervention.
    Chiang P; Zheng J; Yu Y; Mak KH; Chui CK; Cai Y
    IEEE Comput Graph Appl; 2013; 33(1):44-57. PubMed ID: 24807881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The depolarization sequence of the human heart surface computed from measured body surface potentials.
    Huiskamp G; Van Oosterom A
    IEEE Trans Biomed Eng; 1988 Dec; 35(12):1047-58. PubMed ID: 3220498
    [No Abstract]   [Full Text] [Related]  

  • 13. A fast-marching approach to cardiac electrophysiology simulation for XMR interventional imaging.
    Sermesant M; Coudière Y; Moreau-Villèger V; Rhode KS; Hill DL; Razavi RS
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):607-15. PubMed ID: 16686010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Ventricular depolarization and repolarization processes and body surface potentials].
    Okamoto Y; Aoki M; Musha T
    Iyodenshi To Seitai Kogaku; 1985 Dec; 23(7):458-62. PubMed ID: 3835329
    [No Abstract]   [Full Text] [Related]  

  • 15. Use of group theory in the selection and description of regularization methods for functional source imaging.
    Greensite F
    IEEE Trans Biomed Eng; 2006 Sep; 53(9):1832-40. PubMed ID: 16941839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Heart: a new visual training method for electrocardiographic analysis.
    Olson CW; Lange D; Chan JK; Olson KE; Albano A; Wagner GS; Selvester RH
    J Electrocardiol; 2007; 40(5):457.e1-7. PubMed ID: 17604044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetocardiography provides non-invasive three-dimensional electroanatomical imaging of cardiac electrophysiology.
    Fenici R; Brisinda D
    Int J Cardiovasc Imaging; 2006; 22(3-4):595-7. PubMed ID: 16763885
    [No Abstract]   [Full Text] [Related]  

  • 18. Wavefront-based models for inverse electrocardiography.
    Ghodrati A; Brooks DH; Tadmor G; MacLeod RS
    IEEE Trans Biomed Eng; 2006 Sep; 53(9):1821-31. PubMed ID: 16941838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of measured torso potentials with those simulated from epicardial potentials for ventricular depolarization and repolarization in the intact dog.
    Ramsey M; Barr RC; Spach MS
    Circ Res; 1977 Nov; 41(5):660-72. PubMed ID: 908112
    [No Abstract]   [Full Text] [Related]  

  • 20. [Electrocardiographic image of myocardial ischemia: real measurements and biophysical models. Part II].
    Baum OV; Voloshin VI; Popov LA
    Biofizika; 2012; 57(5):860-9. PubMed ID: 23136780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.