BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 31699133)

  • 21. The interdependence of mammary-specific super-enhancers and their native promoters facilitates gene activation during pregnancy.
    Zeng X; Lee HK; Wang C; Achikeh P; Liu C; Hennighausen L
    Exp Mol Med; 2020 Apr; 52(4):682-690. PubMed ID: 32321991
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved regulatory element prediction based on tissue-specific local epigenomic signatures.
    He Y; Gorkin DU; Dickel DE; Nery JR; Castanon RG; Lee AY; Shen Y; Visel A; Pennacchio LA; Ren B; Ecker JR
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):E1633-E1640. PubMed ID: 28193886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Loci-specific histone acetylation profiles associated with transcriptional coactivator p300 during early myoblast differentiation.
    Khilji S; Hamed M; Chen J; Li Q
    Epigenetics; 2018; 13(6):642-654. PubMed ID: 29927685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous Mapping of Enhancers and Enhancer Rearrangements with Paired-End H3K27ac ChIP-seq.
    Antman I; Davis E; Abu-Kamel S; Hecht M; Drier Y
    Methods Mol Biol; 2022; 2535():131-140. PubMed ID: 35867228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epigenomic landscape of enhancer elements during Hydra head organizer formation.
    Reddy PC; Gungi A; Ubhe S; Galande S
    Epigenetics Chromatin; 2020 Oct; 13(1):43. PubMed ID: 33046126
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-wide enhancer prediction from epigenetic signatures using genetic algorithm-optimized support vector machines.
    Fernández M; Miranda-Saavedra D
    Nucleic Acids Res; 2012 May; 40(10):e77. PubMed ID: 22328731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decoding regulatory structures and features from epigenomics profiles: A Roadmap-ENCODE Variational Auto-Encoder (RE-VAE) model.
    Hu R; Pei G; Jia P; Zhao Z
    Methods; 2021 May; 189():44-53. PubMed ID: 31672653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. InTAD: chromosome conformation guided analysis of enhancer target genes.
    Okonechnikov K; Erkek S; Korbel JO; Pfister SM; Chavez L
    BMC Bioinformatics; 2019 Jan; 20(1):60. PubMed ID: 30704404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multifaceted regulation of enhancers in cancer.
    Xiao Q; Xiao Y; Li LY; Chen MK; Wu M
    Biochim Biophys Acta Gene Regul Mech; 2022 Aug; 1865(6):194839. PubMed ID: 35750313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global Quantitative Mapping of Enhancers in Rice by STARR-seq.
    Sun J; He N; Niu L; Huang Y; Shen W; Zhang Y; Li L; Hou C
    Genomics Proteomics Bioinformatics; 2019 Apr; 17(2):140-153. PubMed ID: 31201999
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inferring mammalian tissue-specific regulatory conservation by predicting tissue-specific differences in open chromatin.
    Kaplow IM; Schäffer DE; Wirthlin ME; Lawler AJ; Brown AR; Kleyman M; Pfenning AR
    BMC Genomics; 2022 Apr; 23(1):291. PubMed ID: 35410163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of regulatory elements in mammalian genomes using chromatin signatures.
    Won KJ; Chepelev I; Ren B; Wang W
    BMC Bioinformatics; 2008 Dec; 9():547. PubMed ID: 19094206
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CENTRE: a gradient boosting algorithm for Cell-type-specific ENhancer-Target pREdiction.
    Rapakoulia T; Lopez Ruiz De Vargas S; Omgba PA; Laupert V; Ulitsky I; Vingron M
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37982748
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methods for ChIP-seq analysis: A practical workflow and advanced applications.
    Nakato R; Sakata T
    Methods; 2021 Mar; 187():44-53. PubMed ID: 32240773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RFECS: a random-forest based algorithm for enhancer identification from chromatin state.
    Rajagopal N; Xie W; Li Y; Wagner U; Wang W; Stamatoyannopoulos J; Ernst J; Kellis M; Ren B
    PLoS Comput Biol; 2013; 9(3):e1002968. PubMed ID: 23526891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comprehensive Survey of ChIP-Seq Datasets to Identify Candidate Iron Homeostasis Genes Regulated by Chromatin Modifications.
    Yu Y; Wang Y; Yao Z; Wang Z; Xia Z; Lee J
    Methods Mol Biol; 2023; 2665():95-111. PubMed ID: 37166596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A predictive modeling approach for cell line-specific long-range regulatory interactions.
    Roy S; Siahpirani AF; Chasman D; Knaack S; Ay F; Stewart R; Wilson M; Sridharan R
    Nucleic Acids Res; 2015 Oct; 43(18):8694-712. PubMed ID: 26338778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epigenomic profiling of primate lymphoblastoid cell lines reveals the evolutionary patterns of epigenetic activities in gene regulatory architectures.
    García-Pérez R; Esteller-Cucala P; Mas G; Lobón I; Di Carlo V; Riera M; Kuhlwilm M; Navarro A; Blancher A; Di Croce L; Gómez-Skarmeta JL; Juan D; Marquès-Bonet T
    Nat Commun; 2021 May; 12(1):3116. PubMed ID: 34035253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements.
    Chen X; Neuwald AF; Hilakivi-Clarke L; Clarke R; Xuan J
    PLoS Comput Biol; 2021 Jul; 17(7):e1009203. PubMed ID: 34292930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The genome-wide transcriptional regulatory landscape of ecdysone in the silkworm.
    Cheng D; Cheng T; Yang X; Zhang Q; Fu J; Feng T; Gong J; Xia Q
    Epigenetics Chromatin; 2018 Aug; 11(1):48. PubMed ID: 30149809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.