These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31699303)

  • 21. Feasibility of oxidation-biodegradation serial foam spraying for total petroleum hydrocarbon removal without soil disturbance.
    Bajagain R; Park Y; Jeong SW
    Sci Total Environ; 2018 Jun; 626():1236-1242. PubMed ID: 29898531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental study of DNAPL displacement by a new densified polymer solution and upscaling problems of aqueous polymer flow in porous media.
    Omirbekov S; Colombano S; Alamooti A; Batikh A; Cochennec M; Amanbek Y; Ahmadi-Senichault A; Davarzani H
    J Contam Hydrol; 2023 Jan; 252():104120. PubMed ID: 36495693
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compound washing remediation and response surface analysis of lead-contaminated soil in mining area by fermentation broth and saponin.
    Zhang H; Wang Z; Gao Y
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6899-6908. PubMed ID: 29273981
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ex situ soil washing of highly contaminated silt loam soil using core-crosslinked amphiphilic polymer nanoparticles.
    Kim N; Kwon K; Park J; Kim J; Choi JW
    Chemosphere; 2019 Jun; 224():212-219. PubMed ID: 30822727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal Stability of Gel Foams Stabilized by Xanthan Gum, Silica Nanoparticles and Surfactants.
    Sheng Y; Yan C; Li Y; Peng Y; Ma L; Wang Q
    Gels; 2021 Oct; 7(4):. PubMed ID: 34698155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A pore-scale investigation of heavy crude oil trapping and removal during surfactant-enhanced remediation.
    Ghosh J; Tick GR; Akyol NH; Zhang Y
    J Contam Hydrol; 2019 Jun; 223():103471. PubMed ID: 31014903
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transport characteristics of nanoscale zero-valent iron carried by three different "vehicles" in porous media.
    Su Y; Zhao YS; Li LL; Qin CY; Wu F; Geng NN; Lei JS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(14):1639-52. PubMed ID: 25320851
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Destabilization, Propagation, and Generation of Surfactant-Stabilized Foam during Crude Oil Displacement in Heterogeneous Model Porous Media.
    Xiao S; Zeng Y; Vavra ED; He P; Puerto M; Hirasaki GJ; Biswal SL
    Langmuir; 2018 Jan; 34(3):739-749. PubMed ID: 29045144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced remedial reagents delivery in unsaturated anisotropic soils using surfactant foam.
    Bouzid I; Maire J; Ahmed SI; Fatin-Rouge N
    Chemosphere; 2018 Nov; 210():977-986. PubMed ID: 30208558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of denaturation on soy protein-xanthan interactions: comparison of a whipping-rheological and a bubbling method.
    Carp DJ; Bartholomai GB; Relkin P; Pilosof AM
    Colloids Surf B Biointerfaces; 2001 Jul; 21(1-3):163-171. PubMed ID: 11377945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of the effect of polymers on dermal foam properties using the QbD approach.
    Falusi F; Budai-Szűcs M; Csányi E; Berkó S; Spaits T; Csóka I; Kovács A
    Eur J Pharm Sci; 2022 Jun; 173():106160. PubMed ID: 35248732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A pore scale investigation of crude oil distribution and removal from homogeneous porous media during surfactant-induced remediation.
    Ghosh J; Tick GR
    J Contam Hydrol; 2013 Dec; 155():20-30. PubMed ID: 24113292
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using cryo-SEM and EDS to investigate the stabilisation of oil-water interfaces in mixed aqueous-and-oil foams.
    Si Y; Laidlaw FHJ; Li T; Clegg PS
    Soft Matter; 2024 Mar; 20(10):2212-2217. PubMed ID: 38379398
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current applications of foams formed from mixed surfactant-polymer solutions.
    Bureiko A; Trybala A; Kovalchuk N; Starov V
    Adv Colloid Interface Sci; 2015 Aug; 222():670-7. PubMed ID: 25455806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced flushing of polychlorinated biphenyls contaminated sands using surfactant foam: effect of partition coefficient and sweep efficiency.
    Wang H; Chen J
    J Environ Sci (China); 2012; 24(7):1270-7. PubMed ID: 23513448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Foams stabilized with solid particles carrying stimuli-responsive polymer hairs.
    Nakayama S; Hamasaki S; Ueno K; Mochizuki M; Yusa S; Nakamura Y; Fujii S
    Soft Matter; 2016 May; 12(21):4794-804. PubMed ID: 27109907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation.
    Shen X; Zhao L; Ding Y; Liu B; Zeng H; Zhong L; Li X
    J Hazard Mater; 2011 Feb; 186(2-3):1773-80. PubMed ID: 21227581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes.
    Xue Z; Worthen A; Qajar A; Robert I; Bryant SL; Huh C; Prodanović M; Johnston KP
    J Colloid Interface Sci; 2016 Jan; 461():383-395. PubMed ID: 26414421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Foam injection for enhanced recovery of diesel fuel in soils: Sand column tests monitored by CT scan imagery.
    Fitzhenry E; Martel R; Robert T
    J Hazard Mater; 2022 Jul; 434():128777. PubMed ID: 35462124
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface properties and foamability of saponin and saponin-chitosan systems.
    Santini E; Jarek E; Ravera F; Liggieri L; Warszynski P; Krzan M
    Colloids Surf B Biointerfaces; 2019 Sep; 181():198-206. PubMed ID: 31136951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.