These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 3169942)
61. Abnormal erythrocyte sodium leak in a subset of essential hypertensive patients. De la Sierra A; Coca A; Aguilera MT; Urbano Márquez A Klin Wochenschr; 1989 Jan; 67(1):31-7. PubMed ID: 2466145 [TBL] [Abstract][Full Text] [Related]
62. Relationships between membrane lipids and ion transport in red blood cells of Dahl rats. Vokurková M; Nováková O; Dobesová Z; Kunes J; Zicha J Life Sci; 2005 Aug; 77(13):1452-64. PubMed ID: 15936778 [TBL] [Abstract][Full Text] [Related]
63. [Erythrocyte membrane permeability for univalent cations (Na+, K+) and their transformation in patients with hypertension and symptomatic (renal) hypertension]. Kavtaradze VG; Aleksidze NG; Nadiradze NI; Cheĭshvili LD Biull Eksp Biol Med; 1989 May; 107(5):554-7. PubMed ID: 2736286 [TBL] [Abstract][Full Text] [Related]
64. Thiol protein defect in sodium-lithium countertransport in subset of essential hypertension. Mead P; Wilkinson R; Thomas TH Hypertension; 1999 Dec; 34(6):1275-80. PubMed ID: 10601130 [TBL] [Abstract][Full Text] [Related]
65. Replacement of molecular species of phosphatidylcholine: influence on erythrocyte Na transport. Engelmann B; Op den Kamp JA; Roelofsen B Am J Physiol; 1990 Apr; 258(4 Pt 1):C682-91. PubMed ID: 2333953 [TBL] [Abstract][Full Text] [Related]
66. Functionally abnormal Na+-K+ pump in erythrocytes of a morbidly obese patient. DeLuise M; Flier JS J Clin Invest; 1982 Jan; 69(1):38-44. PubMed ID: 6274916 [TBL] [Abstract][Full Text] [Related]
67. The molecular basis for Na-dependent phosphate transport in human erythrocytes and K562 cells. Timmer RT; Gunn RB J Gen Physiol; 2000 Sep; 116(3):363-78. PubMed ID: 10962014 [TBL] [Abstract][Full Text] [Related]
68. Deficiency of Src family kinases Fgr and Hck results in activation of erythrocyte K/Cl cotransport. De Franceschi L; Fumagalli L; Olivieri O; Corrocher R; Lowell CA; Berton G J Clin Invest; 1997 Jan; 99(2):220-7. PubMed ID: 9005990 [TBL] [Abstract][Full Text] [Related]
69. [Membrane transport of cations in erythrocytes during treatment of essential hypertension with angiotensin-converting enzyme inhibitors]. Smrcková I; Stríbrná J; Petrásek R; Skibová J; Lánská V Cas Lek Cesk; 1992 May; 131(10):294-6. PubMed ID: 1638592 [TBL] [Abstract][Full Text] [Related]
70. Erythrocytic protein kinase C activity in primary hypertension. Ek P; Toomik R; Eriksson S; Frithz G; Ronquist G; Engström L J Intern Med; 1998 Apr; 243(4):299-305. PubMed ID: 9627144 [TBL] [Abstract][Full Text] [Related]
71. Erythrocyte shape and volume changes caused by an inhibitor of the glucose and anion transporters. Blank ME; Diedrich DF Biorheology; 1990; 27(3-4):345-55. PubMed ID: 2261501 [TBL] [Abstract][Full Text] [Related]
72. Age-dependent variation in the cytosol/membrane distribution of red cell protein kinase-C. Ramachandran M; Abraham EC Am J Hematol; 1989 May; 31(1):69-70. PubMed ID: 2705443 [TBL] [Abstract][Full Text] [Related]
73. Symposium on diversity of membrane cation transport in vertebrate red blood cells. An overview. Willis JS Comp Biochem Physiol Comp Physiol; 1992 Aug; 102(4):595-6. PubMed ID: 1355020 [No Abstract] [Full Text] [Related]
74. The Ernest Witebsky memorial lecture. Red but not dead: not a hapless sac of hemoglobin. Greenwalt TJ Immunol Invest; 1995; 24(1-2):3-21. PubMed ID: 7713590 [TBL] [Abstract][Full Text] [Related]
75. White blood cell and platelet distribution widths are associated with hypertension: data mining approaches. Mansoori A; Farizani Gohari NS; Etemad L; Poudineh M; Ahari RK; Mohammadyari F; Azami M; Rad ES; Ferns G; Esmaily H; Ghayour Mobarhan M Hypertens Res; 2024 Feb; 47(2):515-528. PubMed ID: 37880498 [TBL] [Abstract][Full Text] [Related]
76. Aging in Normotensive and Spontaneously Hypertensive Rats: Focus on Erythrocyte Properties. Radosinska J; Kollarova M; Jasenovec T; Radosinska D; Vrbjar N; Balis P; Puzserova A Biology (Basel); 2023 Jul; 12(7):. PubMed ID: 37508459 [TBL] [Abstract][Full Text] [Related]
77. A Mendelian randomization-based exploration of red blood cell distribution width and mean corpuscular volume with risk of hemorrhagic strokes. Liu J; Chou EL; Lau KK; Woo PYM; Wan TK; Huang R; Chan KHK HGG Adv; 2022 Oct; 3(4):100135. PubMed ID: 36051507 [TBL] [Abstract][Full Text] [Related]
78. Glucose-induced changes in Na+/H+ antiport activity and gene expression in cultured vascular smooth muscle cells. Role of protein kinase C. Williams B; Howard RL J Clin Invest; 1994 Jun; 93(6):2623-31. PubMed ID: 8201001 [TBL] [Abstract][Full Text] [Related]
79. Effect of protein kinase C modulators on the leucocyte Na+/H+ antiport in type 1 (insulin-dependent) diabetic subjects with albuminuria. Ng LL; Simmons D; Frighi V; Garrido MC; Bomford J Diabetologia; 1990 May; 33(5):278-84. PubMed ID: 2165458 [TBL] [Abstract][Full Text] [Related]
80. Phosphorylation of atrial natriuretic factor R1 receptor by serine/threonine protein kinases: evidences for receptor regulation. Larose L; Rondeau JJ; Ong H; De Léan A Mol Cell Biochem; 1992 Oct; 115(2):203-11. PubMed ID: 1280321 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]