BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 31699899)

  • 1. Independent tubulin binding and polymerization by the proline-rich region of Tau is regulated by Tau's N-terminal domain.
    McKibben KM; Rhoades E
    J Biol Chem; 2019 Dec; 294(50):19381-19394. PubMed ID: 31699899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A functional role for intrinsic disorder in the tau-tubulin complex.
    Melo AM; Coraor J; Alpha-Cobb G; Elbaum-Garfinkle S; Nath A; Rhoades E
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14336-14341. PubMed ID: 27911791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Characterization of Tau in Fuzzy Tau:Tubulin Complexes.
    Fung HYJ; McKibben KM; Ramirez J; Gupta K; Rhoades E
    Structure; 2020 Mar; 28(3):378-384.e4. PubMed ID: 31995742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effect of phosphorylation and substrate modulation on tau's ability to promote microtubule growth and nucleation.
    Brandt R; Lee G; Teplow DB; Shalloway D; Abdel-Ghany M
    J Biol Chem; 1994 Apr; 269(16):11776-82. PubMed ID: 8163474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous Tau-Tubulin Complexes Accelerate Microtubule Polymerization.
    Li XH; Rhoades E
    Biophys J; 2017 Jun; 112(12):2567-2574. PubMed ID: 28636913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tau mutants bind tubulin heterodimers with enhanced affinity.
    Elbaum-Garfinkle S; Cobb G; Compton JT; Li XH; Rhoades E
    Proc Natl Acad Sci U S A; 2014 Apr; 111(17):6311-6. PubMed ID: 24733915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional organization of microtubule-associated protein tau. Identification of regions which affect microtubule growth, nucleation, and bundle formation in vitro.
    Brandt R; Lee G
    J Biol Chem; 1993 Feb; 268(5):3414-9. PubMed ID: 8429017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation-mimicking glutamate clusters in the proline-rich region are sufficient to simulate the functional deficiencies of hyperphosphorylated tau protein.
    Eidenmüller J; Fath T; Maas T; Pool M; Sontag E; Brandt R
    Biochem J; 2001 Aug; 357(Pt 3):759-67. PubMed ID: 11463346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-molecule imaging of Tau dynamics on the microtubule surface.
    Stern JL; Lessard DV; Ali R; Berger CL
    Methods Cell Biol; 2017; 141():135-154. PubMed ID: 28882299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The binding and phosphorylation of Thr231 is critical for Tau's hyperphosphorylation and functional regulation by glycogen synthase kinase 3beta.
    Lin YT; Cheng JT; Liang LC; Ko CY; Lo YK; Lu PJ
    J Neurochem; 2007 Oct; 103(2):802-13. PubMed ID: 17680984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization by nuclear magnetic resonance of the impact of phosphorylation in the proline-rich region of the disordered Tau protein.
    Sibille N; Huvent I; Fauquant C; Verdegem D; Amniai L; Leroy A; Wieruszeski JM; Lippens G; Landrieu I
    Proteins; 2012 Feb; 80(2):454-62. PubMed ID: 22072628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Annexins A2 and A6 interact with the extreme N terminus of tau and thereby contribute to tau's axonal localization.
    Gauthier-Kemper A; Suárez Alonso M; Sündermann F; Niewidok B; Fernandez MP; Bakota L; Heinisch JJ; Brandt R
    J Biol Chem; 2018 May; 293(21):8065-8076. PubMed ID: 29636414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Microtubule Assembly by Tau and not by Pin1.
    Kutter S; Eichner T; Deaconescu AM; Kern D
    J Mol Biol; 2016 May; 428(9 Pt A):1742-59. PubMed ID: 26996940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tau phosphorylation at serine 396 and serine 404 by human recombinant tau protein kinase II inhibits tau's ability to promote microtubule assembly.
    Evans DB; Rank KB; Bhattacharya K; Thomsen DR; Gurney ME; Sharma SK
    J Biol Chem; 2000 Aug; 275(32):24977-83. PubMed ID: 10818091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into tau function and dysfunction through single-molecule fluorescence.
    Melo AM; Elbaum-Garfinkle S; Rhoades E
    Methods Cell Biol; 2017; 141():27-44. PubMed ID: 28882307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau.
    Goode BL; Feinstein SC
    J Cell Biol; 1994 Mar; 124(5):769-82. PubMed ID: 8120098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Much More Than a Cytoskeletal Protein: Physiological and Pathological Functions of the Non-microtubule Binding Region of Tau.
    Brandt R; Trushina NI; Bakota L
    Front Neurol; 2020; 11():590059. PubMed ID: 33193056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau's ability to bind and stabilize microtubules.
    Cho JH; Johnson GV
    J Neurochem; 2004 Jan; 88(2):349-58. PubMed ID: 14690523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262.
    Drewes G; Trinczek B; Illenberger S; Biernat J; Schmitt-Ulms G; Meyer HE; Mandelkow EM; Mandelkow E
    J Biol Chem; 1995 Mar; 270(13):7679-88. PubMed ID: 7706316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tau Binds to Multiple Tubulin Dimers with Helical Structure.
    Li XH; Culver JA; Rhoades E
    J Am Chem Soc; 2015 Jul; 137(29):9218-21. PubMed ID: 26165802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.