BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31699907)

  • 21. Structural elements of an NRPS cyclization domain and its intermodule docking domain.
    Dowling DP; Kung Y; Croft AK; Taghizadeh K; Kelly WL; Walsh CT; Drennan CL
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12432-12437. PubMed ID: 27791103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FRET monitoring of a nonribosomal peptide synthetase.
    Alfermann J; Sun X; Mayerthaler F; Morrell TE; Dehling E; Volkmann G; Komatsuzaki T; Yang H; Mootz HD
    Nat Chem Biol; 2017 Sep; 13(9):1009-1015. PubMed ID: 28759017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of hybrid peptide synthetases by module and domain fusions.
    Mootz HD; Schwarzer D; Marahiel MA
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5848-53. PubMed ID: 10811885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural and mutational analysis of the nonribosomal peptide synthetase heterocyclization domain provides insight into catalysis.
    Bloudoff K; Fage CD; Marahiel MA; Schmeing TM
    Proc Natl Acad Sci U S A; 2017 Jan; 114(1):95-100. PubMed ID: 27994138
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of linear gramicidin requires the cooperation of two independent reductases.
    Schracke N; Linne U; Mahlert C; Marahiel MA
    Biochemistry; 2005 Jun; 44(23):8507-13. PubMed ID: 15938641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Delineating the reaction mechanism of reductase domains of Nonribosomal Peptide Synthetases from mycobacteria.
    Haque AS; Patel KD; Deshmukh MV; Chhabra A; Gokhale RS; Sankaranarayanan R
    J Struct Biol; 2014 Sep; 187(3):207-214. PubMed ID: 25108240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural Biology of Nonribosomal Peptide Synthetases.
    Miller BR; Gulick AM
    Methods Mol Biol; 2016; 1401():3-29. PubMed ID: 26831698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Orphan MbtH-Like Protein Interacts with Multiple Nonribosomal Peptide Synthetases in Myxococcus xanthus DK1622.
    Esquilín-Lebrón KJ; Boynton TO; Shimkets LJ; Thomas MG
    J Bacteriol; 2018 Nov; 200(21):. PubMed ID: 30126939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture.
    Miller BR; Drake EJ; Shi C; Aldrich CC; Gulick AM
    J Biol Chem; 2016 Oct; 291(43):22559-22571. PubMed ID: 27597544
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and Functional Analyses of the Tridomain-Nonribosomal Peptide Synthetase FmoA3 for 4-Methyloxazoline Ring Formation.
    Katsuyama Y; Sone K; Harada A; Kawai S; Urano N; Adachi N; Moriya T; Kawasaki M; Shin-Ya K; Senda T; Ohnishi Y
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14554-14562. PubMed ID: 33783097
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carrier Protein Interaction with Competing Adenylation and Epimerization Domains in a Nonribosomal Peptide Synthetase Analyzed by FRET.
    Feldberg AL; Mayerthaler F; Rüschenbaum J; Kröger J; Mootz HD
    Angew Chem Int Ed Engl; 2024 May; 63(20):e202317753. PubMed ID: 38488324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The specificity of intermodular recognition in a prototypical nonribosomal peptide synthetase depends on an adaptor domain.
    Karanth MN; Kirkpatrick JP; Krausze J; Schmelz S; Scrima A; Carlomagno T
    Sci Adv; 2024 Jun; 10(25):eadm9404. PubMed ID: 38896613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular modeling of the reductase domain to elucidate the reaction mechanism of reduction of peptidyl thioester into its corresponding alcohol in non-ribosomal peptide synthetases.
    Manavalan B; Murugapiran SK; Lee G; Choi S
    BMC Struct Biol; 2010 Jan; 10():1. PubMed ID: 20067617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New Structural Data Reveal the Motion of Carrier Proteins in Nonribosomal Peptide Synthesis.
    Kittilä T; Mollo A; Charkoudian LK; Cryle MJ
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):9834-40. PubMed ID: 27435901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A subdomain swap strategy for reengineering nonribosomal peptides.
    Kries H; Niquille DL; Hilvert D
    Chem Biol; 2015 May; 22(5):640-8. PubMed ID: 26000750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biosynthetic systems for nonribosomal peptide antibiotic assembly.
    Mootz HD; Marahiel MA
    Curr Opin Chem Biol; 1997 Dec; 1(4):543-51. PubMed ID: 9667890
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetics profiling of gramicidin S synthetase A, a member of nonribosomal peptide synthetases.
    Sun X; Li H; Alfermann J; Mootz HD; Yang H
    Biochemistry; 2014 Dec; 53(50):7983-9. PubMed ID: 25437123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanistic Probes for the Epimerization Domain of Nonribosomal Peptide Synthetases.
    Kim WE; Patel A; Hur GH; Tufar P; Wuo MG; McCammon JA; Burkart MD
    Chembiochem; 2019 Jan; 20(2):147-152. PubMed ID: 30194895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formylation domain: an essential modifying enzyme for the nonribosomal biosynthesis of linear gramicidin.
    Schoenafinger G; Schracke N; Linne U; Marahiel MA
    J Am Chem Soc; 2006 Jun; 128(23):7406-7. PubMed ID: 16756271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aminoacyl-SNACs as small-molecule substrates for the condensation domains of nonribosomal peptide synthetases.
    Ehmann DE; Trauger JW; Stachelhaus T; Walsh CT
    Chem Biol; 2000 Oct; 7(10):765-72. PubMed ID: 11033080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.